Skip to main content

Advertisement

Log in

Constant inhibition in congenital lower extremity shortening: does it begin in utero?

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Limb-length discrepancy (LLD) in children with congenital lower extremity shortening is constant in proportion from birth to skeletal maturity (known as constant inhibition), but its developmental pattern in utero is unknown. The popular prenatal multiplier method to predict LLD at birth assumes constant inhibition in utero to be true. Verifying the in utero developmental pattern of LLD, and thus confirming the validity of the prenatal multiplier method, is crucial for meaningful prenatal parental counseling.

Objective

To elucidate the in utero developmental pattern of LLD in fetuses with congenital lower extremity shortening.

Materials and methods

Clinical indications for 3,605 lower extremity radiographs performed on infants (<1 year old) at a large tertiary hospital over a 17-year period were reviewed. Inclusion criteria were (1) diagnosis of congenital lower extremity shortening, (2) bilateral lower limb postnatal radiographs documenting LLD and (3) fetal ultrasound (US) documenting LLD. Available measurements of femoral, tibial and fibular lengths on fetal US and postnatal radiographs were collected. Prenatal and postnatal length ratios of shorter-to-longer bones were calculated and compared.

Results

Eighteen infants met inclusion criteria. Diagnoses were proximal focal femoral deficiency=4, congenital short femur=2, tibial hemimelia=3, posteromedial tibial bowing=6 and fibular hemimelia=3. The correlations between postnatal and prenatal length ratios were high for the femur, tibia and fibula (R>0.98, P<0.0001). The relative differences in the postnatal and prenatal length ratios of these bones were small (|average|<0.026, standard deviation <0.068).

Conclusion

Our data indicate that the postnatal and prenatal length ratios were equivalent, supporting the constant inhibition pattern of LLD in utero, thus validating the prenatal multiplier method for predicting LLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shapiro F (1982) Developmental patterns in lower-extremity length discrepancies. J Bone Joint Surg Am 64:639–651

    Article  PubMed  CAS  Google Scholar 

  2. Ring PA (1959) Congenital short femur; simple femoral hypoplasia. J Bone Joint Surg Br 41B:73–79

    Article  Google Scholar 

  3. Pappas AM (1984) Congenital posteromedial bowing of the tibia and fibula. J Pediatr Orthop 4:525–531

    Article  PubMed  CAS  Google Scholar 

  4. Westin GW, Sakai DN, Wood WL (1976) Congenital longitudinal deficiency of the fibula. J Bone Joint Surg Am 58:492–496

    Article  PubMed  CAS  Google Scholar 

  5. Achterman C, Kalamchi A (1979) Congenital deficiency of the fibula. J Bone Joint Surg Br 61B:133–137

    Article  Google Scholar 

  6. Paley D, Bhave A, Herzenberg JE et al (2000) Multiplier method for predicting limb-length discrepancy. J Bone Joint Surg Am 82A:1432–1446

    Article  Google Scholar 

  7. Grantz KL, Hediger ML, Liu D et al (2018) Fetal growth standards: the NICHD fetal growth study approach in context with INTERGROWTH-21st and the World Health Organization Multicentre Growth Reference Study. Am J Obstet Gynecol 218:S641–S655.e28

    Article  PubMed  Google Scholar 

  8. D’Ambrosio V, Pasquali G, Squarcella A et al (2016) Prenatal diagnosis of proximal focal femoral deficiency: literature review of prenatal sonographic findings. J Clin Ultrasound 44:252–259

    Article  PubMed  Google Scholar 

  9. Radler C, Myers AK, Hunter RJ et al (2014) Prenatal diagnosis of congenital femoral deficiency and fibular hemimelia. Prenat Diagn 34:940–945

    Article  PubMed  Google Scholar 

  10. Ramirez M, Hecht JT, Taylor S et al (1994) Tibial hemimelia syndrome: prenatal diagnosis by real-time ultrasound. Prenat Diagn 14:167–171

    Article  PubMed  CAS  Google Scholar 

  11. Dreyfus M, Baldauf JJ, Rigaut E et al (1996) Prenatal diagnosis of unilateral tibial hemimelia. Ultrasound Obstet Gynecol 7:205–207

    Article  PubMed  CAS  Google Scholar 

  12. Zollinger PE, Wessels MW, Wladimiroff JW et al (2000) Prenatal ultrasonographic diagnosis of posteromedial bowing of the leg: two case reports. Ultrasound Obstet Gynecol 15:150–153

    Article  PubMed  CAS  Google Scholar 

  13. Paley J, Gelman A, Paley D et al (2005) The prenatal multiplier method for prediction of limb length discrepancy. Prenat Diagn 25:435–438

    Article  PubMed  Google Scholar 

  14. Rogala EJ, Wynne-Davis R, Littlejohn A et al (1974) Congenital limb anomalies: frequency and aetiological factors. Data from the Edinburgh Register of the Newborn (1964-68). J Med Genet 11:221–233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Brown FW (1971) The Brown operation for total hemimelia tibia. In: Aitken GT (ed) Selected lower-limb anomalies: surgical and prosthetics management. National Academy of Sciences, Washington, DC, pp 20–28

    Google Scholar 

  16. Boakes JL, Stevens PM, Moseley RF (1991) Treatment of genu valgus deformity in congenital absence of the fibula. J Pediatr Orthop 11:721–724

    Article  PubMed  CAS  Google Scholar 

  17. Froster UG, Baird PA (1993) Congenital defects of lower limbs and associated malformations: a population based study. Am J Med Genet 45:60–64

    Article  PubMed  CAS  Google Scholar 

  18. Bronstein M, Deutsch M (1992) Early diagnosis of proximal femoral deficiency. Gynecol Obstet Investig 34:246–248

    Article  CAS  Google Scholar 

  19. Boden SD, Fallon MD, Davidson R et al (1989) Proximal femoral focal deficiency: evidence for a defect in proliferation and maturation of chondrocytes. J Bone Joint Surg Am 71:1119–1129

    Article  PubMed  CAS  Google Scholar 

  20. Johnson RL, Tabin CJ (1997) Molecular models for vertebrate limb development. Cell 90:979–990

    Article  PubMed  CAS  Google Scholar 

  21. Zguricas J, Bakker WF, Heus H et al (1998) Genetics of limb development and congenital hand malformations. Plast Reconstr Surg 101:1126–1135

    Article  PubMed  CAS  Google Scholar 

  22. Sifakis S, Basel D, Ianakiev P et al (2001) Distal limb malformations: underlying mechanisms and clinical associations. Clin Genet 60:165–172

    Article  PubMed  CAS  Google Scholar 

  23. Gramellini D, Fieni S, Vadora E (2003) Prenatal diagnosis of isolated limb defects: an updated review. Fetal Diagn Ther 20:96–101

    Article  Google Scholar 

  24. Bryant DD 3rd, Epps CH (1991) Proximal femoral focal deficiency evaluation and management. Orthopedics 14:775–784

  25. Reynolds JF, Wyandt HE, Kelly TE (1985) De novo 21q interstitial deletion in a retarded boy with ulno-fibular dysostosis. Am J Med Genet 20:173–180

    Article  PubMed  CAS  Google Scholar 

  26. Zuniga A, Zeller R, Probst S (2012) The molecular basis of human congenital limb malformations. Wiley Interdiscip Rev Dev Biol 1:803–822

    Article  PubMed  CAS  Google Scholar 

  27. Deimling S, Sotiropoulos C, Lau K et al (2016) Tibial hemimelia associated with GL13 truncation. J Hum Genet 61:443–446

    Article  PubMed  CAS  Google Scholar 

  28. Pauli RM, Feldman PF (1986) Major limb malformations following intrauterine exposure to ethanol: two additional cases and literature review. Teratology 33:273–280

    Article  PubMed  CAS  Google Scholar 

  29. Hoyme HE, Jones KL, Dixon SD et al (1990) Prenatal cocaine exposure and fetal vascular disruption. Pediatrics 85:743–747

    PubMed  CAS  Google Scholar 

  30. McCredie J, Willert HG (1999) Longitudinal limb deficiencies and the slcerotomes. An analysis of 378 dysmelic malformations induced by thalidomide. J Bone Joint Surg (Br) 81:9–23

    Article  CAS  Google Scholar 

  31. Froster UG, Baird PA (1993) Maternal factors, medications, and drug exposure in congenital limb reduction defects. Environ Health Perspect 101:269–274

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kelly PM, Dimeglio A (2008) Lower-limb growth: how predictable are predictions. J Child Orthop 2:407–415

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fowler JR, Ilyas AM (2011) The accuracy of digital radiography in orthopaedic applications. Clin Orthop Relat Res 469:1781–1784

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Tsai.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, A., Laor, T., Estroff, J.A. et al. Constant inhibition in congenital lower extremity shortening: does it begin in utero?. Pediatr Radiol 48, 1451–1462 (2018). https://doi.org/10.1007/s00247-018-4153-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-018-4153-5

Keywords

Navigation