Pediatric Radiology

, Volume 48, Issue 8, pp 1139–1151 | Cite as

Optimization of magnetization-prepared rapid gradient echo (MP-RAGE) sequence for neonatal brain MRI

  • Lili HeEmail author
  • Jinghua Wang
  • Zhong-Lin Lu
  • Beth M. Kline-Fath
  • Nehal A. Parikh
Original Article



Sequence optimization in neonates might improve detection sensitivity of abnormalities for a variety of conditions. However this has been historically challenging because tissue properties such as the longitudinal relaxation time and proton density differ significantly between neonates and adults.


To optimize the magnetization-prepared rapid gradient echo (MP-RAGE) sequence to enhance both signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) efficiencies.

Materials and methods

We optimized neonatal MP-RAGE sequence through (1) reducing receive bandwidth to decrease noise, (2) shortening acquisition train length (acquisition number per repetition time or total number of read-out radiofrequency rephrasing pulses) using slice partial Fourier acquisition and (3) simulating the solution of Bloch’s equation under optimal receive bandwidth and acquisition train length. Using the optimized sequence parameters, we scanned 12 healthy full-term infants within 2 weeks of birth and four preterm infants at 40 weeks’ corrected age.


Compared with a previously published neonatal protocol, we were able to reduce the total scan time by reduce the total scan time by 60% and increase the average SNR efficiency by 160% (P<0.001) and the average CNR efficiency by 26% (P=0.029).


Our in vivo neonatal brain imaging experiments confirmed that both SNR and CNR efficiencies significantly increased with our proposed protocol. Our proposed optimization methodology could be readily extended to other populations (e.g., older children, adults), as well as different organ systems, field strengths and MR sequences.


Acquisition train length Brain K-space Magnetic resonance imaging Magnetization-prepared rapid gradient echo sequence Neonates Optimization 



This work was funded in part by National Institutes of Health (NIH) grants R01-NS094200 and R01-NS096037 from the National Institute of Neurological Diseases and Stroke (NAP).

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Rutherford MA, Ward P, Malamateniou C (2005) Advanced MR techniques in the term-born neonate with perinatal brain injury. Semin Fetal Neonatal Med 10:445–460CrossRefPubMedGoogle Scholar
  2. 2.
    Mugler JP 3rd, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15:152–157CrossRefPubMedGoogle Scholar
  3. 3.
    Huppi PS, Warfield S, Kikinis R et al (1998) Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol 43:224–235CrossRefPubMedGoogle Scholar
  4. 4.
    Inder TE, Warfield SK, Wang H et al (2005) Abnormal cerebral structure is present at term in premature infants. Pediatrics 115:286–294CrossRefPubMedGoogle Scholar
  5. 5.
    Srinivasan L, Dutta R, Counsell SJ et al (2007) Quantification of deep gray matter in preterm infants at term-equivalent age using manual volumetry of 3-tesla magnetic resonance images. Pediatrics 119:759–765CrossRefPubMedGoogle Scholar
  6. 6.
    Peterson BS, Anderson AW, Ehrenkranz R et al (2003) Regional brain volumes and their later neurodevelopmental correlates in term and preterm infants. Pediatrics 111:939–948CrossRefPubMedGoogle Scholar
  7. 7.
    Vasileiadis GT, Gelman N, Han VK et al (2004) Uncomplicated intraventricular hemorrhage is followed by reduced cortical volume at near-term age. Pediatrics 114:e367–372CrossRefPubMedGoogle Scholar
  8. 8.
    Tolsa CB, Zimine S, Warfield SK et al (2004) Early alteration of structural and functional brain development in premature infants born with intrauterine growth restriction. Pediatr Res 56:132–138CrossRefPubMedGoogle Scholar
  9. 9.
    Inder TE, Huppi PS, Warfield S et al (1999) Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Ann Neurol 46:755–760CrossRefPubMedGoogle Scholar
  10. 10.
    Toft PB, Leth H, Ring PB et al (1995) Volumetric analysis of the normal infant brain and in intrauterine growth retardation. Early Hum Dev 43:15–29CrossRefPubMedGoogle Scholar
  11. 11.
    Murphy BP, Inder TE, Huppi PS et al (2001) Impaired cerebral cortical gray matter growth after treatment with dexamethasone for neonatal chronic lung disease. Pediatrics 107:217–221CrossRefPubMedGoogle Scholar
  12. 12.
    Deichmann R, Good CD, Josephs O et al (2000) Optimization of 3-D MP-RAGE sequences for structural brain imaging. NeuroImage 12:112–127CrossRefPubMedGoogle Scholar
  13. 13.
    Epstein FH, Mugler JP 3rd, Brookeman JR (1994) Optimization of parameter values for complex pulse sequences by simulated annealing: application to 3D MP-RAGE imaging of the brain. Magn Reson Med 31:164–177CrossRefPubMedGoogle Scholar
  14. 14.
    Tardif CL, Collins DL, Pike GB (2010) Regional impact of field strength on voxel-based morphometry results. Hum Brain Mapp 31:943–957CrossRefPubMedGoogle Scholar
  15. 15.
    Wu HH, Nishimura DG (2010) 3D magnetization-prepared imaging using a stack-of-rings trajectory. Magn Reson Med 63:1210–1218CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lin C, Bernstein MA (2008) 3D magnetization prepared elliptical centric fast gradient echo imaging. Magn Reson Med 59:434–439CrossRefPubMedGoogle Scholar
  17. 17.
    Jack CR Jr, Bernstein MA, Fox NC et al (2008) The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 27:685–691CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tardif CL, Collins DL, Pike GB (2009) Sensitivity of voxel-based morphometry analysis to choice of imaging protocol at 3 T. NeuroImage 44:827–838CrossRefPubMedGoogle Scholar
  19. 19.
    Wang J, He L, Zheng H et al (2014) Optimizing the magnetization-prepared rapid gradient-echo (MP-RAGE) sequence. PLoS One 9:e96899CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Williams LA, Gelman N, Picot PA et al (2005) Neonatal brain: regional variability of in vivo MR imaging relaxation rates at 3.0 T--initial experience. Radiology 235:595–603CrossRefPubMedGoogle Scholar
  21. 21.
    Williams LA, DeVito TJ, Winter JD et al (2007) Optimization of 3D MP-RAGE for neonatal brain imaging at 3.0 T. Magn Reson Imaging 25:1162–1170CrossRefPubMedGoogle Scholar
  22. 22.
    Gelman N, Ewing JR, Gorell JM et al (2001) Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents. Magn Reson Med 45:71–79CrossRefPubMedGoogle Scholar
  23. 23.
    Mugler JP 3rd (2014) Optimized three-dimensional fast-spin-echo MRI. J Magn Reson Imaging 39:745–767CrossRefPubMedGoogle Scholar
  24. 24.
    Macovski A (1996) Noise in MRI. Magn Reson Med 36:494–497CrossRefPubMedGoogle Scholar
  25. 25.
    Conklin J, Winter JD, Thompson RT et al (2008) High-contrast 3D neonatal brain imaging with combined T1- and T2-weighted MP-RAGE. Magn Reson Med 59:1190–1196CrossRefPubMedGoogle Scholar
  26. 26.
    Shi F, Yap PT, Wu G et al (2011) Infant brain atlases from neonates to 1- and 2-year-olds. PLoS One 6:e18746CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Liu X, Tanaka M, Okutomi M (2013) Single-image noise level estimation for blind denoising. IEEE Trans Image Process 22:5226–5237CrossRefPubMedGoogle Scholar
  28. 28.
    He L, Wang J, Smiths M et al (2015) Optimization of magnetization-prepared rapid gradient-echo (MP-RAGE) sequence for neonatal brain MRI. Paper presented at the ISMRM, TorontoGoogle Scholar
  29. 29.
    Qin Q (2012) Point spread functions of the T2 decay in k-space trajectories with long echo train. Magn Reson Imaging 30:1134–1142CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mugler JP 3rd, Bao S, Mulkern RV et al (2000) Optimized single-slab three-dimensional spin-echo MR imaging of the brain. Radiology 216:891–899CrossRefPubMedGoogle Scholar
  31. 31.
    Margosian P, Schmitt F, Purdy D (1986) Faster MR imaging: imaging with half the data. Health Care Instrum 1:195–197Google Scholar
  32. 32.
    Feinberg DA, Hale JD, Watts JC et al (1986) Halving MR imaging time by conjugation: demonstration at 3.5 kG. Radiology 161:527–531CrossRefPubMedGoogle Scholar
  33. 33.
    Parikh NA (2016) Advanced neuroimaging and its role in predicting neurodevelopmental outcomes in very preterm infants. Semin Perinatol 40:530–541CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    van Laerhoven H, de Haan TR, Offringa M et al (2013) Prognostic tests in term neonates with hypoxic-ischemic encephalopathy: a systematic review. Pediatrics 131:88–98CrossRefPubMedGoogle Scholar
  35. 35.
    Schneider J, Kober T, Bickle Graz M et al (2016) Evolution of T1 relaxation, ADC, and fractional anisotropy during early brain maturation: a serial imaging study on preterm infants. AJNR Am J Neuroradiol 37:155–162CrossRefPubMedGoogle Scholar
  36. 36.
    Leppert IR, Almli CR, McKinstry RC et al (2009) T(2) relaxometry of normal pediatric brain development. J Magn Reson Imaging 29:258–267CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Constable RT, Gore JC (1992) The loss of small objects in variable TE imaging: implications for FSE, RARE, and EPI. Magn Reson Med 28:9–24CrossRefPubMedGoogle Scholar
  38. 38.
    Ortendahl DA, Kaufman L, Kramer DM (1992) Analysis of hybrid imaging techniques. Magn Reson Med 26:155–173CrossRefPubMedGoogle Scholar
  39. 39.
    Zur Y, Wood ML, Neuringer LJ (1991) Spoiling of transverse magnetization in steady-state sequences. Magn Reson Med 21:251–263CrossRefPubMedGoogle Scholar
  40. 40.
    Dobbing J, Sands J (1973) Quantitative growth and development of human brain. Arch Dis Child 48:757–767CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Jones RA, Palasis S, Grattan-Smith JD (2004) MRI of the neonatal brain: optimization of spin-echo parameters. AJR Am J Roentgenol 182:367–372CrossRefPubMedGoogle Scholar
  42. 42.
    Paus T, Collins DL, Evans AC et al (2001) Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 54:255–266CrossRefPubMedGoogle Scholar
  43. 43.
    Saunders DE, Thompson C, Gunny R et al (2007) Magnetic resonance imaging protocols for paediatric neuroradiology. Pediatr Radiol 37:789–797CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yu X, Zhang Y, Lasky RE et al (2010) Comprehensive brain MRI segmentation in high risk preterm newborns. PLoS One 5:e13874CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    He L, Parikh NA (2013) Automated detection of white matter signal abnormality using T2 relaxometry: application to brain segmentation on term MRI in very preterm infants. NeuroImage 64:328–340CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lili He
    • 1
    • 2
    • 3
    Email author
  • Jinghua Wang
    • 4
    • 5
  • Zhong-Lin Lu
    • 5
  • Beth M. Kline-Fath
    • 4
  • Nehal A. Parikh
    • 1
    • 2
    • 3
  1. 1.Perinatal Institute, Department of PediatricsCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  2. 2.Pediatric Neuroimaging Research ConsortiumCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  3. 3.The Research Institute at Nationwide Children’s HospitalColumbusUSA
  4. 4.Department of RadiologyUniversity of Cincinnati College of MedicineCincinnatiUSA
  5. 5.Center for Cognitive and Behavioral Brain ImagingThe Ohio State UniversityColumbusUSA

Personalised recommendations