Skip to main content
Log in

Age-related apparent diffusion coefficients of lumbar vertebrae in healthy children at 1.5 T

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient (ADC) calculation is important for detecting bone marrow pathologies.

Objective

To investigate age-related differences of lumbar vertebral body ADC to establish normal values for healthy children.

Materials and methods

Forty-nine healthy children without any history of oncological or hematological diseases (10.2±4.7 years, range: 0–20 years) were included in this retrospective study. All magnetic resonance imaging (MRI) examinations were performed at 1.5 T and with similar scan parameters. The diffusion-weighted sequences were performed with b values of 50, 400 and 800 s/mm2. ADC values were measured by placing regions of interest at three different levels within each lumbar vertebral body (L1 to L5). ADC values were analyzed for different age groups (0–2 years, 3–6 years, 7–11 years, 12–14 years, 15–20 years), for each vertebral and intravertebral level.

Results

The mean ADC of the whole study group was 0.60±0.09 × 10−3 mm2/s. Children between the ages of 12 and 14 years had significantly higher ADC compared to the other age groups (P≤0.0003). ADC values were significantly higher in the 1st lumbar vertebral body compared to the other levels of the lumbar spine (P<0.005) with the exception of L5, and in the upper third of the vertebral bodies compared to the middle or lower thirds (P≤0.003).

Conclusion

The age-, vertebral- and intravertebral level-dependent differences in ADC suggest a varying composition and cellularity in different age groups and in different locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hartsock RJ, Smith EB, Petty CS (1965) Normal variations with aging of the amount of hematopoietic tissue in bone marrow from the anterior iliac crest: a study made from 177 cases of sudden death examined by necropsy. Am J Clin Pathol 43:326–331

    Article  PubMed  CAS  Google Scholar 

  2. Cristy M (1981) Active bone marrow distribution as a function of age in humans. Phys Med Biol 26:389–400

    Article  PubMed  CAS  Google Scholar 

  3. Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    Article  PubMed  Google Scholar 

  4. Le Bihan D, Breton E (1991) Method to measure the molecular diffusion and/or perfusion parameters of live tissue. Magn Reson Imaging 9:II

  5. Herneth AM, Friedrich K, Weidekamm C et al (2005) Diffusion weighted imaging of bone marrow pathologies. Eur J Radiol 55:74–83

    Article  PubMed  Google Scholar 

  6. Razek AA, Abdalla A, Fathy A, Megahed A (2012) Apparent diffusion coefficient of the vertebral bone marrow in children with Gaucher's disease type I and III. Skeletal Radiol 42:283–287

    Article  PubMed  Google Scholar 

  7. MacKenzie JD, Gonzalez L, Hernandez A et al (2007) Diffusion- weighted and diffusion tensor imaging for pediatric musculoskeletal disorders. Pediatr Radiol 37:781–788

    Article  PubMed  Google Scholar 

  8. Li Q, Pan SN, Yin YM et al (2011) Normal cranial bone marrow MR imaging pat- tern with age-related ADC value distribution. Eur J Radiol 80:471–477

    Article  PubMed  Google Scholar 

  9. Nonomura Y, Yasumoto M, Yoshimura R et al (2001) Relationship between bone marrow cellularity and apparent diffusion coefficient. J Magn Reson Imaging 13:757–760

    Article  PubMed  CAS  Google Scholar 

  10. Herrmann J, Krstin N, Schoennagel BP et al (2012) Age-related distribution of vertebral bone-marrow diffusivity. Eur J Radiol 81:4046–4049

    Article  PubMed  Google Scholar 

  11. Friebert SE, Shepardson LB, Shurin SB et al (1998) Pediatric bone marrow cellularity: are we expecting too much? J Pediatr Hematol Oncol 20:439–443

    Article  PubMed  CAS  Google Scholar 

  12. Richardson ML, Patten RM (1994) Age-related changes in marrow distribution in the shoulder: MR imaging findings. Radiology 192:209–215

    Article  PubMed  CAS  Google Scholar 

  13. Moore SG, Dawson KL (1990) Red and yellow marrow in the femur: age-related changes in appearance at MR imaging. Radiology 175:219–223

    Article  PubMed  CAS  Google Scholar 

  14. WHO Multicentre Growth Reference Study Group (2006) WHO motor development study: windows of achievement for six gross motor development milestones. Acta Paediatr Suppl 450:86–95

    Google Scholar 

  15. Thoeny HC, De Keyzer F, Oyen RH, Peeters RR (2005) Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 235:911–917

    Article  PubMed  Google Scholar 

  16. Bartko JJ (1966) The intraclass correlation coefficient as a measure of reliability. Psychol Rep 19:3–11

    Article  PubMed  CAS  Google Scholar 

  17. Jaramillo D, Connolly SA, Vajapeyam S et al (2003) Normal and ischemic epiphysis of the femur: diffusion MR imaging study in piglets. Radiology 227:825–832

    Article  PubMed  Google Scholar 

  18. Abbassi V (1998) Growth and normal puberty. Pediatrics 102(2 Pt 3):507–511

    PubMed  CAS  Google Scholar 

  19. Gilsanz V, Chalfant J, Kalkwarf H et al (2011) Age at onset of puberty predicts bone mass in young adulthood. J Pediatr 158:100-105, 105.e1–220.

  20. Grimston SK, Morrison K, Harder JA, Hanley DA (1992) Bone mineral density during puberty in western Canadian children. Bone Miner 19:85–96

    Article  PubMed  CAS  Google Scholar 

  21. Yilmaz D, Ersoy B, Bilgin E et al (2005) Bone mineral density in girls and boys at different pubertal stages: relation with gonadal steroids, bone formation markers, and growth parameters. J Bone Miner Metab 23:476–482

    Article  PubMed  CAS  Google Scholar 

  22. Soliman A, De Sanctis V, Elalaily R, Bedair S (2014) Advances in pubertal growth and factors influencing it: Can we increase pubertal growth? Indian J Endocrinol Metab 18(Suppl 1):S53–S62

    PubMed  PubMed Central  Google Scholar 

  23. Chevalley T, Bonjour JP, Ferrari S, Rizzoli R (2008) Influence of age at menarche on forearm bone microstructure in healthy young women. J Clin Endocrinol Metab 93:2594–2601

    Article  PubMed  CAS  Google Scholar 

  24. Krohn K, Haffner D, Hügel U et al (2003) 1,25(OH) 2D3 and dihydrotestosterone interact to regulate proliferation and differentiation of epiphyseal chondrocytes. Calcif Tissue Int 73:400–410

    Article  PubMed  CAS  Google Scholar 

  25. Nilsson O, Marino R, De Luca F et al (2005) Endocrine regulation of the growth plate. Horm Res 64:157–165

    PubMed  CAS  Google Scholar 

  26. Modic MT, Steinberg PM, Ross JS et al (1988) Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166:193–199

    Article  PubMed  CAS  Google Scholar 

  27. Ricci C, Cova M, Kang YS et al (1990) Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology 177:83–8828

    Article  PubMed  CAS  Google Scholar 

  28. Ortiz AO, Bordia R (2011) Injury to the vertebral endplate-disk complex associated with osteoporotic vertebral compression fractures. AJNR Am J Neuroradiol 32:115–120

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The first two authors (A.T. and C.S.) contributed equally to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Klee.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tschischka, A., Schleich, C., Boos, J. et al. Age-related apparent diffusion coefficients of lumbar vertebrae in healthy children at 1.5 T. Pediatr Radiol 48, 1008–1012 (2018). https://doi.org/10.1007/s00247-018-4119-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-018-4119-7

Keywords

Navigation