Skip to main content

Advertisement

Log in

Fetal neuroimaging: an update on technical advances and clinical findings

  • Minisymposium: Fetal/neonatal imaging
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

This paper is based on a literature review from 2011 to 2016. The paper is divided into two main sections. The first section relates to technical advances in fetal imaging techniques, including fetal motion compensation, imaging at 3.0 T, 3-D T2-weighted MRI, susceptibility-weighted imaging, computed tomography, morphometric analysis, diffusion tensor imaging, spectroscopy and fetal behavioral assessment. The second section relates to clinical updates, including cerebral lamination, migrational anomalies, midline anomalies, neural tube defects, posterior fossa anomalies, sulcation/gyration and hypoxic–ischemic insults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Mailath-Pokorny M, Kasprian G, Mitter C et al (2012) Magnetic resonance methods in fetal neurology. Semin Fetal Neonatal Med 17:278–284

    Article  CAS  PubMed  Google Scholar 

  2. Malamateniou C, Malik SJ, Counsell SJ et al (2013) Motion-compensation techniques in neonatal and fetal MR imaging. AJNR Am J Neuroradiol 34:1124–1136

    Article  CAS  PubMed  Google Scholar 

  3. Yen C (2016) Correlation between maternal breakfast and fetal motion during fetal MRI. Pediatr Radiol 46:S138

    Google Scholar 

  4. Malamateniou C, McGuinness AK, Allsop JM et al (2011) Snapshot inversion recovery: an optimized single-shot T1-weighted inversion-recovery sequence for improved fetal brain anatomic delineation. Radiology 258:229–235

    Article  PubMed  Google Scholar 

  5. Keraudren K, Kuklisova-Murgasova M, Kyriakopoulou V et al (2014) Automated fetal brain segmentation from 2D MRI slices for motion correction. NeuroImage 101:633–643

    Article  CAS  PubMed  Google Scholar 

  6. Victoria T, Jaramillo D, Roberts TP et al (2014) Fetal magnetic resonance imaging: jumping from 1.5 to 3 tesla (preliminary experience). Pediatr Radiol 44:376–386

    Article  PubMed  Google Scholar 

  7. Krishnamurthy U, Neelavalli J, Mody S et al (2015) MR imaging of the fetal brain at 1.5T and 3.0T field strengths: comparing specific absorption rate (SAR) and image quality. J Perinat Med 43:209–220

    Article  PubMed  Google Scholar 

  8. Neelavalli J, Krishnamurthy U, Jella PK et al (2016) Magnetic resonance angiography of fetal vasculature at 3.0 T. Eur Radiol 26:4570–4576

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jarvis D, Griffiths PD, Majewski C (2016) Demonstration of normal and abnormal fetal brains using 3D printing from in utero MR imaging data. AJNR Am J Neuroradiol 37:1757–1761

    Article  CAS  PubMed  Google Scholar 

  10. Dai Y, Dong S, Zhu M et al (2014) Visualizing cerebral veins in fetal brain using susceptibility-weighted MRI. Clin Radiol 69:e392–e397

    Article  CAS  PubMed  Google Scholar 

  11. Neelavalli J, Mody S, Yeo L et al (2014) MR venography of the fetal brain using susceptibility weighted imaging. J Magn Reson Imaging 40:949–957

    Article  PubMed  Google Scholar 

  12. Neelavalli J, Jella PK, Krishnamurthy U et al (2014) Measuring venous blood oxygenation in fetal brain using susceptibility-weighted imaging. J Magn Reson Imaging 39:998–1006

    Article  PubMed  PubMed Central  Google Scholar 

  13. Robinson AJ, Blaser S, Vladimirov A et al (2015) Foetal "black bone" MRI: utility in assessment of the foetal spine. Br J Radiol 88:20140496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Macé G, Sonigo P, Cormier-Daire V et al (2013) Three-dimensional helical computed tomography in prenatal diagnosis of fetal skeletal dysplasia. Ultrasound Obstet Gynecol 42:161–168

    Article  PubMed  Google Scholar 

  15. Victoria T, Epelman M, Coleman BG et al (2013) Low-dose fetal CT in the prenatal evaluation of skeletal dysplasias and other severe skeletal abnormalities. AJR Am J Roentgenol 200:989–1000

    Article  PubMed  Google Scholar 

  16. Studholme C (2015) Mapping the developing human brain in utero using quantitative MR imaging techniques. Semin Perinatol 39:105–112

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gholipour A, Limperopoulos C, Clancy S et al (2014) Construction of a deformable spatiotemporal MRI atlas of the fetal brain: evaluation of similarity metrics and deformation models. Med Image Comput Comput Assist Interv 17:292–299

    PubMed  PubMed Central  Google Scholar 

  18. Zhan J, Dinov ID, Li J et al (2013) Spatial-temporal atlas of human fetal brain development during the early second trimester. NeuroImage 82:115–126

    Article  PubMed  Google Scholar 

  19. Clouchoux C, Guizard N, Evans AC et al (2012) Normative fetal brain growth by quantitative in vivo magnetic resonance imaging. Am J Obstet Gynecol 206:173.e1–173.e8

    Article  Google Scholar 

  20. Gholipour A, Akhondi-Asl A, Estroff JA, Warfield SK (2012) Multi-atlas multi-shape segmentation of fetal brain MRI for volumetric and morphometric analysis of ventriculomegaly. NeuroImage 60:1819–1831

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wright R, Kyriakopoulou V, Ledig C et al (2014) Automatic quantification of normal cortical folding patterns from fetal brain MRI. NeuroImage 91:21–32

    Article  CAS  PubMed  Google Scholar 

  22. Clouchoux C, Kudelski D, Gholipour A et al (2012) Quantitative in vivo MRI measurement of cortical development in the fetus. Brain Struct Funct 217:127–139

    Article  PubMed  Google Scholar 

  23. Wu J, Awate SP, Licht DJ et al (2015) Assessment of MRI-based automated fetal cerebral cortical folding measures in prediction of gestational age in the third trimester. AJNR Am J Neuroradiol 36:1369–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuklisova-Murgasova M, Cifor A, Napolitano R et al (2013) Registration of 3D fetal neurosonography and MRI. Med Image Anal 17:1137–1150

    Article  PubMed  PubMed Central  Google Scholar 

  25. Qiu A, Mori S, Miller MI (2015) Diffusion tensor imaging for understanding brain development in early life. Annu Rev Psychol 66:853–876

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ouyang A, Jeon T, Sunkin SM et al (2015) Spatial mapping of structural and connectional imaging data for the developing human brain with diffusion tensor imaging. Methods 73:27–37

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi E, Folkerth RD, Galaburda AM, Grant PE (2012) Emerging cerebral connectivity in the human fetal brain: an MR tractography study. Cereb Cortex 22:455–464

    Article  PubMed  Google Scholar 

  28. Huang H, Vasung L (2014) Gaining insight of fetal brain development with diffusion MRI and histology. Int J Dev Neurosci 32:11–22

    Article  PubMed  Google Scholar 

  29. Jakab A, Kasprian G, Schwartz E et al (2015) Disrupted developmental organization of the structural connectome in fetuses with corpus callosum agenesis. NeuroImage111:277–288

  30. Simões RV, Sanz-Cortes M, Muñoz-Moreno E et al (2015) Feasibility and technical features of fetal brain magnetic resonance spectroscopy in 1.5 T scanners. Am J Obstet Gynecol 213:741–742

    Article  PubMed  Google Scholar 

  31. Berger-Kulemann V, Brugger PC, Pugash D et al (2013) MR spectroscopy of the fetal brain: is it possible without sedation? AJNR Am J Neuroradiol 34:424–431

    Article  CAS  PubMed  Google Scholar 

  32. Cetin I, Barberis B, Brusati V et al (2011) Lactate detection in the brain of growth-restricted fetuses with magnetic resonance spectroscopy. Am J Obstet Gynecol 205:350.e1–350.e7

    Article  Google Scholar 

  33. Hayat TT, Nihat A, Martinez-Biarge M et al (2011) Optimization and initial experience of a multisection balanced steady-state free precession cine sequence for the assessment of fetal behavior in utero. AJNR Am J Neuroradiol 32:331–338

    Article  CAS  PubMed  Google Scholar 

  34. Pugash D, Hendson G, Dunham CP et al (2012) Sonographic assessment of normal and abnormal patterns of fetal cerebral lamination. Ultrasound Obstet Gynecol 40:642–651

    Article  CAS  PubMed  Google Scholar 

  35. Lipitz S, Yinon Y, Malinger G et al (2013) Risk of cytomegalovirus-associated sequelae in relation to time of infection and findings on prenatal imaging. Ultrasound Obstet Gynecol 41:508–514

    Article  CAS  PubMed  Google Scholar 

  36. Blondiaux E, Sileo C, Nahama-Allouche C et al (2013) Periventricular nodular heterotopia on prenatal ultrasound and magnetic resonance imaging. Ultrasound Obstet Gynecol 42:149–155

    Article  CAS  PubMed  Google Scholar 

  37. Teixeira SR, Blondiaux E, Cassart M et al (2015) Association of periventricular nodular heterotopia with posterior fossa cyst: a prenatal case series. Prenat Diagn 35:337–341

    Article  PubMed  Google Scholar 

  38. Fallet-Bianco C, Laquerrière A, Poirier K et al (2014) Mutations in tubulin genes are frequent causes of various foetal malformations of cortical development including microlissencephaly. Acta Neuropathol Commun 2:69

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lacalm A, Nadaud B, Massoud M et al (2016) Prenatal diagnosis of cobblestone lissencephaly associated with Walker-Warburg syndrome based on a specific sonographic pattern. Ultrasound Obstet Gynecol 47:117–122

    Article  CAS  PubMed  Google Scholar 

  40. Bell S, O'Mahony E, Fink AM et al (2015) Antenatal imaging of anomalies of the corpus callosum: a decade of experience. Arch Gynecol Obstet 292:537–542

    Article  PubMed  Google Scholar 

  41. Kasprian G, Brugger PC, Schöpf V et al (2013) Assessing prenatal white matter connectivity in commissural agenesis. Brain 136:168–179

    Article  PubMed  Google Scholar 

  42. Vinurel N, Van Nieuwenhuyse A, Cagneaux M et al (2014) Distortion of the anterior part of the interhemispheric fissure: significance and implications for prenatal diagnosis. Ultrasound Obstet Gynecol 43:346–352

    Article  CAS  PubMed  Google Scholar 

  43. Woitek R, Dvorak A, Weber M et al (2014) MR-based morphometry of the posterior fossa in fetuses with neural tube defects of the spine. PLoS One 9:e112585

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mignone Philpott C, Shannon P, Chitayat D et al (2013) Diffusion-weighted imaging of the cerebellum in the fetus with Chiari II malformation. AJNR Am J Neuroradiol 34:1656–1660

    Article  CAS  PubMed  Google Scholar 

  45. Kasprian GJ, Paldino MJ, Mehollin-Ray AR et al (2015) Prenatal imaging of occipital encephaloceles. Fetal Diagn Ther 37:241–248

    Article  PubMed  Google Scholar 

  46. Dankovcik R, Vyhnalkova V, Muranska S et al (2012) Encephalocystocele — uncommon diagnosis in prenatal medicine. Fetal Diagn Ther 32:295–298

    Article  PubMed  Google Scholar 

  47. Pugash D, Oh T, Godwin K et al (2011) Sonographic 'molar tooth' sign in the diagnosis of Joubert syndrome. Ultrasound Obstet Gynecol 38:598–602

    Article  CAS  PubMed  Google Scholar 

  48. Quarello E, Molho M, Garel C et al (2014) Prenatal abnormal features of the fourth ventricle in Joubert syndrome and related disorders. Ultrasound Obstet Gynecol 43:227–232

    Article  CAS  PubMed  Google Scholar 

  49. Robinson AJ (2014) Inferior vermian hypoplasia — preconception, misconception. Ultrasound Obstet Gynecol 43:123–136

    Article  PubMed  Google Scholar 

  50. Bolduc ME, du Plessis AJ, Sullivan N et al (2012) Regional cerebellar volumes predict functional outcome in children with cerebellar malformations. Cerebellum 11:531–542

    Article  PubMed  Google Scholar 

  51. Massoud M, Cagneaux M, Garel C et al (2014) Prenatal unilateral cerebellar hypoplasia in a series of 26 cases: significance and implications for prenatal diagnosis. Ultrasound Obstet Gynecol 44:447–454

    Article  CAS  PubMed  Google Scholar 

  52. Fernández-Mayoralas DM, Recio-Rodríguez M, Fernández-Perrone AL et al (2014) In utero diagnosis of PHACE syndrome by fetal magnetic resonance imaging (MRI). J Child Neurol 29:118–121

    Article  PubMed  Google Scholar 

  53. Manganaro L, Bernardo S, La Barbera L et al (2012) Role of foetal MRI in the evaluation of ischaemic-haemorrhagic lesions of the foetal brain. J Perinat Med 40:419–426

    Article  PubMed  Google Scholar 

  54. Leroy F, Cai Q, Bogart SL et al (2015) New human-specific brain landmark: the depth asymmetry of superior temporal sulcus. Proc Natl Acad Sci U S A 112:1208–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fink AM, Hingston T, Sampson A et al (2010) Malformation of the fetal brain in thanatophoric dysplasia: US and MRI findings. Pediatr Radiol 40:S134–S137

    Article  PubMed  Google Scholar 

  56. Pugash D, Lehman AM, Langlois S (2014) Prenatal ultrasound and MRI findings of temporal and occipital lobe dysplasia in a twin with achondroplasia. Ultrasound Obstet Gynecol 44:365–368

    Article  CAS  PubMed  Google Scholar 

  57. Cesaretti C, Spaccini L, Rustico M et al (2014) Prenatal magnetic resonance imaging detection of temporal lobes and hippocampal anomalies in hypochondroplasia. Prenat Diagn 34:1015–1017

    Article  CAS  PubMed  Google Scholar 

  58. Rubio EI, Blask A, Bulas DI (2016) Ultrasound and MR imaging findings in prenatal diagnosis of craniosynostosis syndromes. Pediatr Radiol 46:709–718

    Article  PubMed  Google Scholar 

  59. Stark Z, McGillivray G, Sampson A et al (2015) Apert syndrome: temporal lobe abnormalities on fetal brain imaging. Prenat Diagn 35:179–182

    Article  PubMed  Google Scholar 

  60. Ozcan UA, Işik U, Dincer A, Erzen C (2013) Identification of fetal precentral gyrus on diffusion weighted MRI. Brain Dev 35:4–9

    Article  PubMed  Google Scholar 

  61. Righini A, Parazzini C, Doneda C et al (2012) Early formative stage of human focal cortical gyration anomalies: fetal MRI. AJR Am J Roentgenol 198:439–447

    Article  PubMed  Google Scholar 

  62. Tarui T, Khwaja OS, Estroff JA et al (2012) Altered fetal cerebral and cerebellar development in twin-twin transfusion syndrome. AJNR Am J Neuroradiol 33:1121–1126

    Article  CAS  PubMed  Google Scholar 

  63. Griffiths PD, Sharrack S, Chan KL et al (2015) Fetal brain injury in survivors of twin pregnancies complicated by demise of one twin as assessed by in utero MR imaging. Prenat Diagn 35:583–591

    Article  CAS  PubMed  Google Scholar 

  64. Merhar SL, Kline-Fath BM, Meinzen-Derr J et al (2013) Fetal and postnatal brain MRI in premature infants with twin-twin transfusion syndrome. J Perinatol 33:112–118

    Article  CAS  PubMed  Google Scholar 

  65. Weisz B, Hoffmann C, Ben-Baruch S et al (2014) Early detection by diffusion-weighted sequence magnetic resonance imaging of severe brain lesions after fetoscopic laser coagulation for twin-twin transfusion syndrome. Ultrasound Obstet Gynecol 44:44–49

    Article  CAS  PubMed  Google Scholar 

  66. Tarui T, Khwaja OS, Estroff JA et al (2011) Fetal MR imaging evidence of prolonged apparent diffusion coefficient decrease in fetal death. AJNR Am J Neuroradiol 32:E126–E128

    Article  CAS  PubMed  Google Scholar 

  67. Wagner MW, Vaught AJ, Poretti A et al (2015) Vein of Galen aneurysmal malformation: prognostic markers depicted on fetal MRI. Neuroradiol J 28:72–75

    Article  PubMed  PubMed Central  Google Scholar 

  68. Schellen C, Ernst S, Gruber GM et al (2015) Fetal MRI detects early alterations of brain development in tetralogy of Fallot. Am J Obstet Gynecol 213:392.e1–392.e7

    Article  Google Scholar 

  69. Clouchoux C, du Plessis AJ, Bouyssi-Kobar M et al (2013) Delayed cortical development in fetuses with complex congenital heart disease. Cereb Cortex 23:2932–2943

    Article  CAS  PubMed  Google Scholar 

  70. Brossard-Racine M, du Plessis AJ, Vezina G et al (2014) Prevalence and spectrum of in utero structural brain abnormalities in fetuses with complex congenital heart disease. AJNR Am J Neuroradiol 35:1593–1599

    Article  CAS  PubMed  Google Scholar 

  71. Mlczoch E, Brugger P, Ulm B et al (2013) Structural congenital brain disease in congenital heart disease: results from a fetal MRI program. Eur J Paediatr Neurol 17:153–160

    Article  PubMed  Google Scholar 

  72. Sun L, Macgowan CK, Sled JG et al (2015) Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation 131:1313–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sethi V, Tabbutt S, Dimitropoulos A et al (2013) Single-ventricle anatomy predicts delayed microstructural brain development. Pediatr Res 73:661–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li Y, Yin S, Fang J et al (2015) Neurodevelopmental delay with critical congenital heart disease is mainly from prenatal injury not infant cardiac surgery: current evidence based on a meta-analysis of functional magnetic resonance imaging. Ultrasound Obstet Gynecol 45:639–648

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley J. Robinson.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, A.J., Ederies, M.A. Fetal neuroimaging: an update on technical advances and clinical findings. Pediatr Radiol 48, 471–485 (2018). https://doi.org/10.1007/s00247-017-3965-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-017-3965-z

Keywords

Navigation