Skip to main content

Advertisement

Log in

Asian consortium on radiation dose of pediatric cardiac CT (ASCI-REDCARD)

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

With incremental utilization of pediatric cardiac CT in congenital heart disease, it is imperative to define its current radiation dose levels in clinical practice in order to help imagers optimize CT protocols, particularly in Asia and other developing countries where CT physicists are not readily available.

Objective

To evaluate current radiation dose levels and influencing factors in cardiac CT in children with congenital heart disease in Asia by conducting a retrospective multi-center, multi-vendor study.

Materials and methods

We included 1,043 pediatric cardiac CT examinations performed in 8 centers between January 2014 and December 2014 to evaluate congenital heart disease. In five weight groups, we calculated radiation dose metrics including volume CT dose index, size-specific dose estimate, dose–length product and effective dose. Age at CT exam, gender, tube voltage, scan mode, CT indication and image reconstruction algorithm were analyzed to learn whether they influenced CT radiation dose.

Results

Volume CT dose index, size-specific dose estimate, dose–length product and effective dose of pediatric cardiac CT showed variations in the range of 4.3–23.8 mGy, 4.9–17.6 mGy, 55.8–501.3 mGy∙cm and 1.5–3.2 mSv, respectively, within five weight groups. Gender, tube voltage, scan mode and cardiac function assessment significantly influenced CT radiation dose.

Conclusion

This multi-center, multi-vendor study demonstrated variations in radiation dose metrics of pediatric cardiac CT reflecting current practice in Asia. Gender, tube voltage, scan mode and cardiac function assessment should be considered as essential radiation dose-influencing factors in developing optimal pediatric cardiac CT protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Goo HW, Park IS, Ko JK et al (2003) CT of congenital heart disease: normal and typical pathologic conditions. Radiographics 23:S147–S165

    Article  PubMed  Google Scholar 

  2. Goo HW, Park IS, Ko JK et al (2005) Computed tomography for the diagnosis of congenital heart disease in pediatric and adult patients. Int J Card Imaging 21:347–365

    Article  Google Scholar 

  3. Goo HW, Seo DM, Yun TJ et al (2009) Coronary artery anomalies and clinically important anatomy in patients with congenital heart disease. Pediatr Radiol 39:265–273

    Article  PubMed  Google Scholar 

  4. Goo HW (2010) State-of-the-art CT imaging techniques for congenital heart disease. Korean J Radiol 11:4–18

    Article  PubMed  Google Scholar 

  5. Goo HW, Yang DH (2010) Coronary artery visibility in free-breathing young children with congenital heart disease on cardiac 64-slice CT: dual-source ECG-triggered sequential scan vs. single-source non-ECG-synchronized spiral scan. Pediatr Radiol 40:1670–1680

    Article  PubMed  Google Scholar 

  6. Goo HW (2013) Current trends in cardiac CT in children. Acta Radiol 54:1055–1062

    Article  PubMed  Google Scholar 

  7. Goo HW, Park SH, Koo HJ et al (2014) Atresia of the bilateral pulmonary veins: a rare and dismal anomaly identified on cardiac CT. Pediatr Radiol 44:942–947

    Article  PubMed  Google Scholar 

  8. Goo HW, Park JJ, Kim EA et al (2014) Cardiac fusion and complex cardiac defects in thoracopagus twins: diagnostic value of cardiac CT. Pediatr Radiol 44:1169–1174

    Article  PubMed  Google Scholar 

  9. Goo HW (2011a) Haemodynamic findings on cardiac CT in children with congenital heart disease. Pediatr Radiol 41:250–261

    Article  PubMed  Google Scholar 

  10. Kim HJ, Goo HW, Park SH et al (2013) Left ventricle volume measured by cardiac CT in an infant with a small left ventricle: a new and accurate method in determining uni- or biventricular repair. Pediatr Radiol 43:243–246

    Article  PubMed  Google Scholar 

  11. Goo HW, Park SH (2015) Semiautomatic three-dimensional CT ventricular volumetry in patients with congenital heart disease: agreement between two methods with different user interaction. Int J Card Imaging 31:223–232

    Article  Google Scholar 

  12. Tsai IC, Goo HW (2013) Cardiac CT and MRI for congenital heart disease in Asian countries: recent trends in publication based on a scientific database. Int J Card Imaging 29:1–5

    Article  Google Scholar 

  13. Goo HW (2012) CT radiation dose optimization and estimation: an update for radiologists. Korean J Radiol 13:1–11

    Article  PubMed  Google Scholar 

  14. Ghoshhajra BB, Lee AM, Engel LC et al (2014) Radiation dose reduction in pediatric cardiac computed tomography: experience from a tertiary medical center. Pediatr Cardiol 35:171–179

    Article  PubMed  Google Scholar 

  15. Lee E, Goo HW, Lee JY et al (2015) Age- and gender-specific estimates of cumulative CT dose over 5 years using real radiation dose tracking data in children. Pediatr Radiol 45:1282–1292

    Article  PubMed  Google Scholar 

  16. Verdum FR, Gutierrez D, Vader JP et al (2008) CT radiation dose in children: a survey to establish age-based diagnostic reference levels in Switzerland. Eur Radiol 18:1980–1986

    Article  Google Scholar 

  17. Thomas KE (2011) CT utilization — trends and developments beyond the United States’ borders. Pediatr Radiol 41:S562–S566

    Article  Google Scholar 

  18. Kritsaneepaiboon S, Trinavarat P, Visrutaratna P et al (2012) Survey of pediatric MDCT radiation dose from university hospitals in Thailand: a preliminary for national dose survey. Acta Radiol 53:820–826

    Article  PubMed  Google Scholar 

  19. Vassileva J, Rehani MM, Applegate K et al (2013) IAEA survey of paediatric computed tomography practice in 40 countries in Asia, Europe, Latin America and Africa: procedures and protocols. Eur Radiol 23:623–631

    Article  PubMed  Google Scholar 

  20. Neefjes LA, Dharampal AS, Rossi A et al (2011) Image quality and radiation exposure using different low-dose scan protocols in dual-source CT coronary angiography: randomized study. Radiology 261:779–786

    Article  PubMed  Google Scholar 

  21. Geleijns J, Joemai RM, Dewey M et al (2011) Radiation exposure to patients in a multicenter coronary angiography trial (CORE 64). AJR Am J Roentgenol 196:1126–1132

    Article  PubMed  Google Scholar 

  22. Hausleiter J, Meyer TS, Martuscelli E et al (2012) Image quality and radiation exposure with prospectively ECG-triggered axial scanning for coronary CT angiography: the multicenter, multivendor, randomized PROTECTION-III study. JACC Cardiovasc Imaging 5:484–493

    Article  PubMed  Google Scholar 

  23. Deseive S, Pugliese F, Meave A et al (2015) Image quality and radiation dose of a prospectively electrocardiography-triggered high-pitch data acquisition strategy for coronary CT angiography: the multicenter, randomized PROTECTION IV study. J Cardiovasc Comput Tomogr 9:278–285

    Article  PubMed  Google Scholar 

  24. Weustink AC, Mollet NR, Neefjes LA et al (2009) Preserved diagnostic performance of dual-source CT coronary angiography with reduced radiation exposure and cancer risk. Radiology 252:53–60

    Article  PubMed  Google Scholar 

  25. McCollough CH (2003) Patient dose in cardiac computed tomography. Herz 28:1–6

    Article  PubMed  Google Scholar 

  26. Christner JA, Kofler JM, McCollough CH et al (2010) Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting international commission on radiological protection publication 103 or dual-energy scanning. AJR Am J Roentgenol 194:881–889

    Article  PubMed  Google Scholar 

  27. Huda W, Magill D, He W et al (2011) CT effective dose per dose length product using ICRP 103 weighting factors. Med Phys 38:1261–1265

    Article  PubMed  Google Scholar 

  28. Deak PD, Smal Y, Kalender WA et al (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257:158–166

    Article  PubMed  Google Scholar 

  29. Strauss KJ, Goske MJ (2011) Estimated pediatric radiation dose during CT. Pediatr Radiol 41:S472–S482

    Article  Google Scholar 

  30. International Commission on Radiation Units & Measurements (2005) Patient dosimetry for x rays used in medical imaging. J ICRU 5:i

  31. Brady SL, Kaufman RA (2012) Investigation of American Association of Physicists in Medicine report 204 size-specific dose estimates for pediatric CT implementation. Radiology 265:832–840

    Article  PubMed  Google Scholar 

  32. Nie P, Wang X, Cheng Z et al (2012) The value of low-dose prospective ECG-gated dual-source CT angiography in the diagnosis of coarctation of the aorta in infants and children. Clin Radiol 67:738–745

    Article  CAS  PubMed  Google Scholar 

  33. Nie P, Yang G, Wang X et al (2014) Application of prospective ECG-gated high-pitch 128-slice dual-source CT angiography in the diagnosis of congenital extracardiac vascular anomalies in infants and children. PLoS One 9:e115793

    Article  PubMed  PubMed Central  Google Scholar 

  34. Huang MP, Liang CH, Zhao ZJ et al (2011) Evaluation of image quality and radiation dose at prospective ECG-triggered axial 256-slice multi-detector CT in infants with congenital heart disease. Pediatr Radiol 41:858–866

    Article  PubMed  Google Scholar 

  35. Ben Saad M, Rohnean A, Sigal-Cinqualbre A et al (2009) Evaluation of image quality and radiation dose of thoracic and coronary dual-source CT in 110 infants with congenital heart disease. Pediatr Radiol 39:668–676

    Article  PubMed  Google Scholar 

  36. Paul JF, Rohnean A, Elfassy E et al (2011) Radiation dose for thoracic and coronary step-and-shoot CT using a 128-slice dual-source machine in infants and small children with congenital heart disease. Pediatr Radiol 41:244–249

    Article  PubMed  Google Scholar 

  37. Goo HW, Suh DS (2006a) Tube current reduction in non-electrocardiography-gated heart CT by combined tube current modulation in children. Pediatr Radiol 36:344–351

    Article  PubMed  Google Scholar 

  38. Goo HW, Suh DS (2006b) The influences of tube voltage and scan direction on combined tube current modulation: a phantom study. Pediatr Radiol 36:833–840

    Article  PubMed  Google Scholar 

  39. Noferini L, Fulcheri C, Taddeucci A et al (2014) Considerations on the practical application of the size-specific dose estimation (SSDE) method of AAPM report 204. Radiol Phys Technol 7:296–302

    Article  PubMed  Google Scholar 

  40. Kaasalainen T, Palmu K, Reijonen V et al (2014) Effect of patient centering on patient dose and image noise in chest CT. AJR Am J Roentgenol 203:123–130

    Article  PubMed  Google Scholar 

  41. Brady SL, Mirro AE, Moore BM et al (2015) How to appropriately calculate effective dose for CT using either size-specific dose estimates or dose-length product. AJR Am J Roentgenol 204:953–958

    Article  PubMed  Google Scholar 

  42. Gabusi M, Riccardi L, Aliberti C et al (2016) Radiation dose in chest CT: assessment of size-specific dose estimates based on water-equivalent correction. Phytopathol Mediterr 32:393–397

    CAS  Google Scholar 

  43. Goo HW (2011b) Individualized volume CT dose index determined by cross-sectional area and mean density of the body to achieve uniform image noise of contrast-enhanced pediatric chest CT obtained at variable kV levels and with combined tube current modulation. Pediatr Radiol 41:839–847

    Article  PubMed  Google Scholar 

  44. Moore BM, Brady SL, Mirro AE et al (2014) Size-specific dose estimate provides a simple method to calculate organ dose for pediatric CT examinations. Med Phys 41:071917

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Martin W. M. Law, PhD, Department of Radiology, Queen Mary Hospital, HKSAR, China, for his help with statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Woo Goo.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, P.K.T., Goo, H.W., Du, J. et al. Asian consortium on radiation dose of pediatric cardiac CT (ASCI-REDCARD). Pediatr Radiol 47, 899–910 (2017). https://doi.org/10.1007/s00247-017-3847-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-017-3847-4

Keywords

Navigation