Skip to main content
Log in

Realistic phantoms to characterize dosimetry in pediatric CT

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

The estimation of organ doses and effective doses for children receiving CT examinations is of high interest. Newer, more realistic anthropomorphic body models can provide information on individual organ doses and improved estimates of effective dose.

Materials and methods

Previously developed body models representing 50th-percentile individuals at reference ages (newborn, 1, 5, 10 and 15 years) were modified to represent 10th, 25th, 75th and 90th height percentiles for both genders and an expanded range of ages (3, 8 and 13 years). We calculated doses for 80 pediatric reference phantoms from simulated chest-abdomen-pelvis exams on a model of a Philips Brilliance 64 CT scanner. Individual organ and effective doses were normalized to dose-length product (DLP) and fit as a function of body diameter.

Results

We calculated organ and effective doses for 80 reference phantoms and plotted them against body diameter. The data were well fit with an exponential function. We found DLP-normalized organ dose to correlate strongly with body diameter (R2>0.95 for most organs). Similarly, we found a very strong correlation with body diameter for DLP-normalized effective dose (R2>0.99). Our results were compared to other studies and we found average agreement of approximately 10%.

Conclusion

We provide organ and effective doses for a total of 80 reference phantoms representing normal-stature children ranging in age and body size. This information will be valuable in replacing the types of vendor-reported doses available. These data will also permit the recording and tracking of individual patient doses. Moreover, this comprehensive dose database will facilitate patient matching and the ability to predict patient-individualized dose prior to examination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schauer DA, Linton OW (2009) NCRP report No. 160, ionizing radiation exposure of the population of the United States, medical exposure—are we doing less with more, and is there a role for health physicists? Health Phys 97:1–5

    Article  CAS  PubMed  Google Scholar 

  2. Brenner DJ (2002) Estimating cancer risks from pediatric CT: going from the qualitative to the quantitative. Pediatr Radiol 32:228–221

  3. Paterson A, Frush DP (2007) Dose reduction in paediatric MDCT: general principles. Clin Radiol 62:507–517

    Article  CAS  PubMed  Google Scholar 

  4. United Nations Scientific Committee on the Effects of Atomic Radiation (2014) Sources, effects and risks of ionizing radiation: UNSCEAR 2013 Report: Volume II: Scientific Annex B: Effects of radiation exposure of children

  5. Bulas D, Goske M, Applegate K, Wood B (2009) Image Gently: improving health literacy for parents about CT scans for children. Pediatr Radiol 39:112–116

    Article  PubMed  Google Scholar 

  6. Goske MJ, Applegate KE, Boylan J et al (2008) Image Gently(SM): a national education and communication campaign in radiology using the science of social marketing. J Am Coll Radiol 5:1200–1205

    Article  PubMed  Google Scholar 

  7. Goske MJ, Applegate KE, Boylan J et al (2008) The Image Gently campaign: working together to change practice. AJR Am J Roentgenol 190:273–274

    Article  PubMed  Google Scholar 

  8. Goske MJ, Applegate KE, Boylan J et al (2008) The 'Image Gently' campaign: increasing CT radiation dose awareness through a national education and awareness program. Pediatr Radiol 38:265–269

    Article  PubMed  Google Scholar 

  9. Jarry G, DeMarco JJ, Beifuss U et al (2003) A Monte Carlo-based method to estimate radiation dose from spiral CT: from phantom testing to patient-specific models. Phys Med Biol 48:2645–2663

    Article  CAS  PubMed  Google Scholar 

  10. DeMarco JJ, Cagnon CH, Cody DD et al (2005) A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms. Phys Med Biol 50:3989–4004

    Article  CAS  PubMed  Google Scholar 

  11. Staton RJ, Lee C, Lee C et al (2006) Organ and effective doses in newborn patients during helical multislice computed tomography examination. Phys Med Biol 51:5151–5166

    Article  PubMed  Google Scholar 

  12. Li X, Samei E, Segars WP et al (2011) Patient-specific radiation dose and cancer risk estimation in CT: part I. development and validation of a Monte Carlo program. Med Phys 38:397–407

    Article  PubMed  Google Scholar 

  13. Carver DE, Kost SD, Fernald MJ et al (2015) Development and validation of a GEANT4 radiation transport code for CT dosimetry. Health Phys 108:419–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Turner AC, Zankl M, DeMarco JJ et al (2010) The feasibility of a scanner-independent technique to estimate organ dose from MDCT scans: using CTDIvol to account for differences between scanners. Med Phys 37:1816–1825

    Article  PubMed  PubMed Central  Google Scholar 

  15. Turner AC, Zhang D, Khatonabadi M et al (2011) The feasibility of patient size-corrected, scanner-independent organ dose estimates for abdominal CT exams. Med Phys 38:820–829

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cristy M (1979) Development of mathematical phantoms representing children of various ages for use in estimates of internal dose. Health Phys 37:807–807

    Google Scholar 

  17. Cristy M (1981) Mathematical phantoms for evaluation of age-specific internal dose. Trans Am Nucl Soc 38:60–61

    Google Scholar 

  18. Cristy M (1983) Development of mathematical pediatric phantoms for internal dose calculations - successes, limitations, and prospects. Int J Nucl Med Biol 10:54–54

    Article  Google Scholar 

  19. Cristy M, Eckerman K (1987) Specific absorbed fractions of energy at various ages from internal photon sources. Oak Ridge, TN: Oak Ridge National Laboratory; 1987. ORNL/TM-8381 1

  20. Petoussi-Henss N, Zankl M, Fill U, Regulla D (2002) The GSF family of voxel phantoms. Phys Med Biol 47:89–106

  21. Tian X, Li X, Segars WP et al (2013) Dose coefficients in pediatric and adult abdominopelvic CT based on 100 patient models. Phys Med Biol 58:8755

    Article  PubMed  Google Scholar 

  22. Tian X, Li X, Segars WP et al (2014) Pediatric chest and abdominopelvic CT: organ dose estimation based on 42 patient models. Radiology 270:535–547

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li X, Samei E, Segars WP et al (2011) Patient-specific radiation dose and cancer risk for pediatric chest CT. Radiology 259:862–874

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li X, Samei E, Segars WP et al (2008) Patient-specific dose estimation for pediatric chest CT. Med Phys 35:5821–5828

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li X, Samei E, Segars WP et al (2011) Patient-specific radiation dose and cancer risk estimation in CT: part II. Application to patients. Med Phys 38:408–419

    Article  PubMed  Google Scholar 

  26. Kost SD, Fraser ND, Carver DE et al (2015) Patient-specific dose calculations for pediatric CT of the chest, abdomen and pelvis. Pediatr Radiol 45:1771–1780

    Article  PubMed  PubMed Central  Google Scholar 

  27. Agostinelli S, Allison J, Amako KA et al (2003) GEANT4—a simulation toolkit. Nucl Instrum Methods Phys Res A 506:250–303

    Article  CAS  Google Scholar 

  28. Ding A, Gao Y, Liu H et al (2015) VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients. Phys Med Biol 60:5601–5625

    Article  PubMed  Google Scholar 

  29. Lee C, Kim KP, Long DJ et al (2012) Organ doses for reference pediatric and adolescent patients undergoing computed tomography estimated by Monte Carlo simulation. Med Phys 39:2129–2146

    Article  PubMed  PubMed Central  Google Scholar 

  30. Geyer AM, O'Reilly S, Lee C et al (2014) The UF/NCI family of hybrid computational phantoms representing the current US population of male and female children, adolescents, and adults--application to CT dosimetry. Phys Med Biol 59:5225–5242

    Article  PubMed  Google Scholar 

  31. Segars WP, Sturgeon G, Mendonca S et al (2010) 4D XCAT phantom for multimodality imaging research. Med Phys 37:4902–4915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Norris H, Zhang Y, Bond J et al (2014) A set of 4D pediatric XCAT reference phantoms for multimodality research. Med Phys 41:033701

    Article  PubMed  PubMed Central  Google Scholar 

  33. International Commission on Radiological Protection (2002) Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP Publication 89. Ann ICRP 32:1-277

  34. Shrimpton PC, Hillier MC, Lewis MA et al (2006) National survey of doses from CT in the UK: 2003. Br J Radiol 79:968–980

    Article  CAS  PubMed  Google Scholar 

  35. Kuczmarski RJ, Ogden CL, Grummer-Strawn LM et al (2000) CDC growth charts: United States. Adv Data 1-27

  36. Open Ergonomics (2008) PeopleSize 2008 Visual Anthropometry Software. http://www.openerg.com/psz/index.html. Accessed 7 Feb. 2017

  37. National Center for Health Statistics (1997) National Health and Nutrition Examination Survey, III, 1988-94. National Center for Health Statistics

  38. Kuczmarski RJ, Ogden CL, Guo SS et al (2002) 2000 CDC Growth Charts for the United States: methods and development. Vital Health Stat 11:1–190

    Google Scholar 

  39. Virtama P, Helelä T (1969) Radiographic measurements of cortical bone: variations in a normal population between 1 and 90 years of age. Acta Radiol Suppl 293:1–268

    Google Scholar 

  40. International Commission on Radiological Protection (1995) Basic Anatomical & Physiological Data for use in Radiological Protection – The Skeleton. ICRP Publication 70 Ann ICRP 25

  41. Turner AC, Zhang D, Kim HJ et al (2009) A method to generate equivalent energy spectra and filtration models based on measurement for multidetector CT Monte Carlo dosimetry simulations. Med Phys 36:2154–2164

    Article  PubMed  PubMed Central  Google Scholar 

  42. McCollough C, Cody D, Edyvean S et al (2008) The measurement, reporting, and management of radiation dose in CT. AAPM Rep 96:1–28

    Google Scholar 

  43. International Commission on Radiation Units and Measurements (1992) Photon, electron, proton, and neutron interaction data for body tissues. International Commission on Radiation Units and Measurements Report 46. Bethesda, MD

  44. International Commission on Radiological Protection (2007) The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP 37

  45. Boone JM, Strauss KJ, Cody DD et al (2011) Size-specific dose estimates (SSDE) in pediatric and adult body CT examinations. The Report of AAPM Task Group 204. College Park, MD

  46. McCollough C, Bakalyar DM, Bostani M et al (2014) Use of water equivalent diameter for calculating patient size and size-specific dose estimates (SSDE) in CT: The Report of AAPM Task Group 220. College Park, MD

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana E. Carver.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carver, D.E., Kost, S.D., Fraser, N.D. et al. Realistic phantoms to characterize dosimetry in pediatric CT. Pediatr Radiol 47, 691–700 (2017). https://doi.org/10.1007/s00247-017-3805-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-017-3805-1

Keywords

Navigation