Skip to main content
Log in

Muscle MRI in pediatrics: clinical, pathological and genetic correlation

  • Pictorial Essay
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Pediatric myopathies comprise a very heterogeneous group of disorders that may develop at different ages and affect different muscle groups. Its diagnosis is sometimes difficult and must be confirmed by muscle biopsy and/or genetic analysis. In recent years, muscle involvement patterns observed on MRI have become a valuable tool, aiding clinical diagnosis and enriching pathological and genetic assessments. We selected eight myopathy cases from our institutional database in which the pattern of muscle involvement observed on MRI was almost pathognomonic and could therefore contribute to establishing diagnosis. Muscle biopsy, genetic diagnosis or both confirmed all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Straub V, Carlier PG, Mercuri E (2012) TREAT-NMD workshop: pattern recognition in genetic muscle diseases using muscle MRI. Neuromuscul Disord 22 Suppl 2:S42–S53

    Article  PubMed  Google Scholar 

  2. Mercuri E, Muntoni F (2012) The ever-expanding spectrum of congenital muscular dystrophies. Ann Neurol 72:9–17

    Article  PubMed  Google Scholar 

  3. North KN, Wang CH, Clarke N et al (2014) Approach to the diagnosis of congenital myopathies. Neuromuscul Disord 24:97–116

    Article  PubMed  Google Scholar 

  4. Kang PB, Griggs RC (2015) Advances in muscular dystrophies. JAMA Neurol 72:741–742

    Article  PubMed  Google Scholar 

  5. Compeyrot-Lacassagne S, Feldman BM (2007) Inflammatory myopathies in Children. Rheum Dis Clin North Am 33:525–553

    Article  PubMed  Google Scholar 

  6. Pichiecchio A, Tavazzi E (2013) Metabolic myopathies. In: Wattjes MP, Fischer D (eds) Neuromuscular imaging. Springer, New York, pp 127–146

    Chapter  Google Scholar 

  7. Bönnemann CG, Wang CH, Quijano-Roy S et al (2014) Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord 24:289–311

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mercuri E, Jungbluth H, Muntoni F (2005) Muscle imaging in clinical practice: diagnostic value of muscle magnetic resonance imaging in inherited neuromuscular disorders. Curr Opin Neurol 18:526–537

    Article  PubMed  Google Scholar 

  9. Mercuri E, Pichiecchio A, Allsop J et al (2007) Muscle MRI in inherited neuromuscular disorders: past, present, and future. J Magn Reson Imaging 25:433–440

    Article  PubMed  Google Scholar 

  10. Wattjes MP, Kley RA, Fischer D (2010) Neuromuscular imaging in inherited muscle diseases. Eur Radiol 20:2447–2460

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hollingsworth KG, de Sousa PL, Straub V et al (2012) Towards harmonization of protocols for MRI outcome measures in skeletal muscle studies: consensus recommendations from two TREAT-NMD NMR workshops. Neuromuscul Disord 22 Suppl 2:S54–S67

    Article  PubMed  Google Scholar 

  12. Schmidt GP, Reiser MF, Baur-Melnyk A (2007) Whole-body MRI of the musculoskeletal system: the value of MR imaging. Skeletal Radiol 36:1109–1119

    Article  PubMed  PubMed Central  Google Scholar 

  13. Peters SA, Köhler C, Schara U et al (2008) Muscular magnetic resonance imaging for evaluation of myopathies in children. Klin Padiatr 220:37–46

    Article  CAS  PubMed  Google Scholar 

  14. Jungbluth H (2007) Central core disease. Orphanet J Rare Dis 2:25

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kraeva N, Zvaritch E, Rossi AE et al (2013) Novel excitation-contraction uncoupled RYR1 mutations in patients with central core disease. Neuromuscul Disord 23:120–132

    Article  PubMed  Google Scholar 

  16. Klein A, Jungbluth H, Clement E et al (2011) Muscle magnetic resonance imaging in congenital myopathies due to ryanodine receptor type I gene mutations. Arch Neurol 68:1171–1179

    Article  PubMed  Google Scholar 

  17. Jungbluth H, Davis MR, Müller C et al (2004) Magnetic resonance imaging of muscle in congenital myopathies associated with RYR-1 mutations. Neuromuscul Disord 14:785–790

    Article  PubMed  Google Scholar 

  18. Jungbluth H, Wallgren-Pettersson C, Laporte J (2008) Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 3:26

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu YW, Lukiyanchuk V, Schmid SL (2011) Common membrane trafficking defects of disease associated dynamin 2 mutations. Traffic 12:1620–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Catteruccia M, Fattori F, Codemo V et al (2013) Centronuclear myopathy related to dynamin 2 mutations: Clinical, morphological, muscle imaging and genetic features of an Italian cohort. Neuromuscul Disord 23:229–238

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schessl J, Medne L, Hu Y et al (2007) MRI in DNM2-related centronuclear myopathy: evidence for highly selective muscle involvement. Neuromuscul Disord 17:28–32

    Article  PubMed  Google Scholar 

  22. Belinda S, Cowling BS, Cottle DL et al (2011) Four and a half LIM protein 1 gene mutations cause four distinct human myopathies: a comprehensive review of the clinical, histological and pathological features. Neuromuscul Disord 21:237–251

    Article  Google Scholar 

  23. Cowling BS, McGrath MJ, Nguyen MA et al (2008) Identification of FHL1 as a regulator of skeletal muscle mass: implications for human myopathy. J Cell Biol 183:1033–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Selcen D, Bromberg MB, Chin SS et al (2011) Reducing bodies and myofibrillar myopathy features in FHL1 muscular dystrophy. Neurology 77:1951–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Astrea G, Schessl J, Clement E et al (2009) Muscle MRI in FHL1-linked reducing body myopathy. Neuromuscul Disord 19:689–691

    Article  CAS  PubMed  Google Scholar 

  26. Wewer UM, Engvall E (1996) Merosin/laminin-2 and muscular dystrophy. Neuromuscul Disord 6:409–418

    Article  CAS  PubMed  Google Scholar 

  27. Gawlik KI, Durbeej M (2011) Skeletal muscle laminin and MDC1A: pathogenesis and treatment strategies. Skelet Muscle 1:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Quijano-Roy S, Avila-Smirnow, Carlier R (2011) Merosin deficient in congenital muscular dystrophy. In: Wattjes M, Fischer D (eds) Neuromuscular imaging. Springer, New York, pp 177–187

    Google Scholar 

  29. Oto A, Aydingöz U, Başgün N et al (2001) MR imaging of pelvic and thigh muscles in congenital muscular dystrophy. Turk J Pediatr 43:44–51

    CAS  PubMed  Google Scholar 

  30. Yonekawa T, Nishino I (2015) Ullrich congenital muscular dystrophy: clinicopathological features, natural history and pathomechanism(s). J Neurol Neurosurg Psychiatry 86:280–287

    Article  PubMed  Google Scholar 

  31. Ishikawa H, Sugie K, Murayama K et al (2004) Ullrich disease due to deficiency of collagen VI in the sarcolemma. Neurology 62:620–623

    Article  CAS  PubMed  Google Scholar 

  32. Carlier RY, Mompoint D, Avila-Smirnow D et al (2010) Whole-body muscle magnetic resonance imaging in collagen type VI -related myopathies (Ullrich congenital muscular dystrophy and Bethlem myopathy). Scientific Exhibit presented at the European Congress of Radiology, Vienna

  33. Mercuri E, Cini C, Pichiecchio A et al (2003) Muscle magnetic resonance imaging in patients with congenital muscular dystrophy and Ullrich phenotype. Neuromuscul Disord 13:554–558

    Article  CAS  PubMed  Google Scholar 

  34. Mercuri E, Lampe A, Allsop J et al (2005) Muscle MRI in Ullrich congenital muscular dystrophy and Bethlem myopathy. Neuromuscul Disord 15:303–310

    Article  PubMed  Google Scholar 

  35. Gowers WR (1879) Pseudo-hypertrophic muscular Paralysis-A clinical lecture. J & A Churchill, London

    Google Scholar 

  36. Flanigan KM (2014) Duchenne and Becker muscular dystrophies. Neurol Clin 32:671–688

    Article  PubMed  Google Scholar 

  37. Nowak KJ, Davies KE (2004) Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep 5:872–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kinali M, Arechavala-Gomeza V, Cirak S et al (2011) Muscle histology vs MRI in Duchenne muscular dystrophy. Neurology 76:346–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Finanger EL, Russman B, Forbes SC et al (2012) Use of skeletal muscle MRI in diagnosis and monitoring disease progression in Duchenne muscular dystrophy. Phys Med Rehabil Clin N Am 23:1–10

    Article  PubMed  Google Scholar 

  40. Iaccarino L, Ghirardello A, Bettio S et al (2014) The clinical features, diagnosis and classification of dermatomyositis. J Autoimmun 48–49:122–127

    Article  PubMed  Google Scholar 

  41. Malattia C, Damasio MB, Madeo A et al (2014) Whole-body MRI in the assessment of disease activity in juvenile dermatomyositis. Ann Rheum Dis 73:1083–1090

    Article  PubMed  Google Scholar 

  42. Castro TC, Lederman H, Terreri MT et al (2014) Whole-body magnetic resonance imaging in the assessment of muscular involvement in juvenile dermatomyositis/polymyositis patients. Scand J Rheumatol 43:329–333

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia P. Cejas.

Ethics declarations

Conflicts of interest

Dr. Cejas is a speaker (Latin American) for General Electric. Drs. Serra, Galvez, Cavassa, Taratuto, Vazquez, Massaro and Schteinschneider report no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cejas, C.P., Serra, M.M., Galvez, D.F.G. et al. Muscle MRI in pediatrics: clinical, pathological and genetic correlation. Pediatr Radiol 47, 724–735 (2017). https://doi.org/10.1007/s00247-016-3777-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-016-3777-6

Keywords

Navigation