Skip to main content
Log in

Magnetic resonance tissue phase mapping demonstrates altered left ventricular diastolic function in children with chronic kidney disease

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Echocardiographic examinations have revealed functional cardiac abnormalities in children with chronic kidney disease.

Objective

To assess the feasibility of MRI tissue phase mapping in children and to assess regional left ventricular wall movements in children with chronic kidney disease.

Materials and methods

Twenty pediatric patients with chronic kidney disease (before or after renal transplantation) and 12 healthy controls underwent tissue phase mapping (TPM) to quantify regional left ventricular function through myocardial long (Vz) and short-axis (Vr) velocities at all 3 levels of the left ventricle.

Results

Patients and controls (age: 8 years—20 years) were matched for age, height, weight, gender and heart rate. Patients had higher systolic blood pressure. No patient had left ventricular hypertrophy on MRI or diastolic dysfunction on echocardiography. Fifteen patients underwent tissue Doppler echocardiography, with normal z-scores for mitral early diastolic (VE), late diastolic (VA) and peak systolic (VS) velocities. Throughout all left ventricular levels, peak diastolic Vz and Vr (cm/s) were reduced in patients: Vzbase -10.6 ± 1.9 vs. -13.4 ± 2.0 (P < 0.0003), Vzmid -7.8 ± 1.6 vs. -11 ± 1.5 (P < 0.0001), Vzapex -3.8 ± 1.6 vs. -5.3 ± 1.6 (P = 0.01), Vrbase -4.2 ± 0.8 vs. -4.9 ± 0.7 (P = 0.01), Vrmid -4.7 ± 0.7 vs. -5.4 ± 0.7 (P = 0.01), Vrapex -4.7 ± 1.4 vs. -5.6 ± 1.1 (P = 0.05).

Conclusion

Tissue phase mapping is feasible in children and adolescents. Children with chronic kidney disease show significantly reduced peak diastolic long- and short-axis left ventricular wall velocities, reflecting impaired early diastolic filling. Thus, tissue phase mapping detects chronic kidney disease-related functional myocardial changes before overt left ventricular hypertrophy or echocardiographic diastolic dysfunction occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chronic Kidney Disease Prognosis Consortium, Matsushita K, van der Velde M et al (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375:2073–2081

    Article  Google Scholar 

  2. McCullough PA, Li S, Jurkovitz CT et al (2008) Chronic kidney disease, prevalence of premature cardiovascular disease, and relationship to short-term mortality. Am Heart J 156:277–283

    Article  PubMed  Google Scholar 

  3. Groothoff JW, Gruppen MP, Offringa M et al (2002) Mortality and causes of death of end-stage renal disease in children: a Dutch cohort study. Kidney Int 61:621–629

    Article  PubMed  Google Scholar 

  4. Sud M, Tangri N, Pintilie M et al (2014) Risk of end-stage renal disease and death after cardiovascular events in chronic kidney disease. Circulation 130:458–465

    Article  PubMed  Google Scholar 

  5. Zoccali C, Benedetto FA, Mallamaci F et al (2001) Prognostic impact of the indexation of left ventricular mass in patients undergoing dialysis. J Am Soc Nephrol 12:2768–2774

    CAS  PubMed  Google Scholar 

  6. Shlipak MG, Fried LF, Cushman M et al (2005) Cardiovascular mortality risk in chronic kidney disease: comparison of traditional and novel risk factors. JAMA 293:1737–1745

    Article  CAS  PubMed  Google Scholar 

  7. Johnstone LM, Jones CL, Grigg LE et al (1996) Left ventricular abnormalities in children, adolescents and young adults with renal disease. Kidney Int 50:998–1006

    Article  CAS  PubMed  Google Scholar 

  8. Mitsnefes MM, Kimball TR, Witt SA et al (2003) Left ventricular mass and systolic performance in pediatric patients with chronic renal failure. Circulation 107:864–868

    Article  PubMed  Google Scholar 

  9. Matteucci MC, Wühl E, Picca S et al (2006) Left ventricular geometry in children with mild to moderate chronic renal insufficiency. J Am Soc Nephrol 17:218–226

    Article  PubMed  Google Scholar 

  10. Goren A, Glaser J, Drukker A (1993) Diastolic function in children and adolescents on dialysis and after kidney transplantation: an echocardiographic assessment. Pediatr Nephrol 7:725–728

    Article  CAS  PubMed  Google Scholar 

  11. Mitsnefes MM, Kimball TR, Border WL et al (2004) Impaired left ventricular diastolic function in children with chronic renal failure. Kidney Int 65:1461–1466

    Article  PubMed  Google Scholar 

  12. Rinat C, Becker-Cohen R, Nir A et al (2010) A comprehensive study of cardiovascular risk factors, cardiac function and vascular disease in children with chronic renal failure. Nephrol Dial Transplant 25:785–793

    Article  PubMed  Google Scholar 

  13. Chinali M, de Simone G, Matteucci MC et al (2007) Reduced systolic myocardial function in children with chronic renal insufficiency. J Am Soc Nephrol 18:593–598

    Article  PubMed  Google Scholar 

  14. Raimondi F, Chinali M, Girfoglio D et al (2009) Inappropriate left ventricular mass in children and young adults with chronic renal insufficiency. Pediatr Nephrol 24:2015–2022

    Article  PubMed  Google Scholar 

  15. Chinali M, Matteucci MC, Franceschini A et al (2015) Advanced parameters of cardiac mechanics in children with CKD: the 4C study. Clin J Am Soc Nephrol 10:1357–1363

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tafreshi RI, Human N, Otukesh H (2011) Evaluation of combined left ventricular function using the myocardial performance index in children with chronic kidney disease. Echocardiography 28:97–103

    Article  PubMed  Google Scholar 

  17. Ommen SR, Nishimura RA, Appleton CP et al (2000) Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 102:1788–1794

    Article  CAS  PubMed  Google Scholar 

  18. Ten Harkel ADJ, Cransberg K, Van Osch-Gevers M et al (2009) Diastolic dysfunction in paediatric patients on peritoneal dialysis and after renal transplantation. Nephrol Dial Transplant 24:1987–1991

    Article  PubMed  Google Scholar 

  19. Simpson JM, Rawlins D, Mathur S et al (2013) Systolic and diastolic ventricular function assessed by tissue Doppler imaging in children with chronic kidney disease. Echocardiography 30:331–337

    Article  PubMed  Google Scholar 

  20. Lindblad YT, Axelsson J, Balzano R et al (2013) Left ventricular diastolic dysfunction by tissue Doppler echocardiography in pediatric chronic kidney disease. Pediatr Nephrol 28:2003–2013

    Article  PubMed  Google Scholar 

  21. Schoenmaker NJ, Kuipers IM, van der Lee JH et al (2014) Diastolic dysfunction measured by tissue Doppler imaging in children with end-stage renal disease: a report of the RICH-Q study. Cardiol Young 24:236–244

    Article  PubMed  Google Scholar 

  22. Abraham TP, Dimaano VL, Liang H-Y (2007) Role of tissue Doppler and strain echocardiography in current clinical practice. Circulation 116:2597–2609

    Article  PubMed  Google Scholar 

  23. Petersen SE, Jung BA, Wiesmann F et al (2006) Myocardial tissue phase mapping with cine phase-contrast MR imaging: regional wall motion analysis in healthy volunteers. Radiology 238:816–826

    Article  PubMed  Google Scholar 

  24. Parekh K, Markl M, Magrath P et al (2014) Assessment of myocardial motion in children and young adults using high-temporal resolution MR tissue phase mapping. J Cardiovasc Magn Reson 16:P328

    Article  PubMed Central  Google Scholar 

  25. Camarda J, Magrath P, Parekh K et al (2015) Co-registered MR tissue phase mapping and speckle tracking echocardiography: inter-modality comparison of regional myocardial velocities in pediatric patients. J Cardiovasc Magn Reson 17:Q103

    Article  PubMed Central  Google Scholar 

  26. Rider OJ, Ajufo E, Ali MK et al (2015) Myocardial tissue phase mapping reveals impaired myocardial tissue velocities in obesity. Int J Cardiovasc Imaging 31:339–347

    Article  PubMed  Google Scholar 

  27. Föll D, Markl M, Menza M et al (2014) Cold ischaemic time and time after transplantation alter segmental myocardial velocities after heart transplantation. Eur J Cardiothorac Surg 45:502–508

    Article  PubMed  Google Scholar 

  28. Foell D, Jung B, Germann E et al (2013) Hypertensive heart disease: MR tissue phase mapping reveals altered left ventricular rotation and regional myocardial long-axis velocities. Eur Radiol 23:339–347

    Article  CAS  PubMed  Google Scholar 

  29. Foell D, Jung BA, Germann E et al (2013) Segmental myocardial velocities in dilated cardiomyopathy with and without left bundle branch block. J Magn Reson Imaging 37:119–126

    Article  PubMed  Google Scholar 

  30. Codreanu I, Pegg TJ, Selvanayagam JB et al (2011) Details of left ventricular remodeling and the mechanism of paradoxical ventricular septal motion after coronary artery bypass graft surgery. J Invasive Cardiol 23:276–282

    PubMed  Google Scholar 

  31. Codreanu I, Robson MD, Rider OJ et al (2014) Details of left ventricular radial wall motion supporting the ventricular theory of the third heart sound obtained by cardiac MR. Br J Radiol 87:20130780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Codreanu I, Robson MD, Rider OJ et al (2013) Effects of ventricular insertion sites on rotational motion of left ventricular segments studied by cardiac MR. Br J Radiol 86:20130326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Föll D, Jung B, Schilli E et al (2010) Magnetic resonance tissue phase mapping of myocardial motion: new insight in age and gender. Circ Cardiovasc Imaging 3:54–64

    Article  PubMed  Google Scholar 

  34. Codreanu I, Robson MD, Golding SJ et al (2010) Longitudinally and circumferentially directed movements of the left ventricle studied by cardiovascular magnetic resonance phase contrast velocity mapping. J Cardiovasc Magn Reson 12:48

    Article  PubMed  PubMed Central  Google Scholar 

  35. Arnold R, Schwendinger D, Jung S et al (2016) Left ventricular mass and systolic function in children with chronic kidney disease-comparing echocardiography with cardiac magnetic resonance imaging. Pediatr Nephrol 31:255–265

    Article  PubMed  Google Scholar 

  36. Bauer S, Markl M, Föll D et al (2013) K-t GRAPPA accelerated phase contrast MRI: improved assessment of blood flow and 3-directional myocardial motion during breath-hold. J Magn Reson Imaging 38:1054–1062

    Article  PubMed  Google Scholar 

  37. Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  38. Schmitz L, Koch H, Bein G et al (1998) Left ventricular diastolic function in infants, children, and adolescents. Reference values and analysis of morphologic and physiologic determinants of echocardiographic Doppler flow signals during growth and maturation. J Am Coll Cardiol 32:1441–1448

    Article  CAS  PubMed  Google Scholar 

  39. Nagueh SF, Smiseth OA, Appleton CP et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29:277–314

    Article  PubMed  Google Scholar 

  40. Dallaire F, Slorach C, Hui W et al (2015) Reference values for pulse wave Doppler and tissue Doppler imaging in pediatric echocardiography. Circ Cardiovasc Imaging 8:e002167

    Article  PubMed  Google Scholar 

  41. Neuhauser HK, Thamm M, Ellert U et al (2011) Blood pressure percentiles by age and height from nonoverweight children and adolescents in Germany. Pediatrics 127:e978–e988

    Article  PubMed  Google Scholar 

  42. Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER et al (2015) Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson 17:29

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gross M-L, Ritz E (2008) Hypertrophy and fibrosis in the cardiomyopathy of uremia--beyond coronary heart disease. Semin Dial 21:308–318

    Article  PubMed  Google Scholar 

  44. Weaver DJ Jr, Kimball TR, Koury PR et al (2009) Cardiac output and associated left ventricular hypertrophy in pediatric chronic kidney disease. Pediatr Nephrol 24:565–570

    Article  PubMed  Google Scholar 

  45. Mencarelli F, Fabi M, Corazzi V et al (2014) Left ventricular mass and cardiac function in a population of children with chronic kidney disease. Pediatr Nephrol 29:893–900

    Article  PubMed  Google Scholar 

  46. Dogan CS, Akman S, Simsek A et al (2015) Assessment of left ventricular function by tissue Doppler echocardiography in pediatric chronic kidney disease. Ren Fail 37:1094–1099

    Article  PubMed  Google Scholar 

  47. van Huis M, Schoenmaker NJ, Groothoff JW et al (2016) Impaired longitudinal deformation measured by speckle-tracking echocardiography in children with end-stage renal disease. Pediatr Nephrol 31:1499–1508

    Article  PubMed  PubMed Central  Google Scholar 

  48. Han JH, Han JS, Kim EJ et al (2015) Diastolic dysfunction is an independent predictor of cardiovascular events in incident dialysis patients with preserved systolic function. PLoS ONE 10:e0118694

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Adriana Komancsek (radiographer) and her team for the competent acquisition of cardiac MR images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Gimpel.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gimpel, C., Jung, B.A., Jung, S. et al. Magnetic resonance tissue phase mapping demonstrates altered left ventricular diastolic function in children with chronic kidney disease. Pediatr Radiol 47, 169–177 (2017). https://doi.org/10.1007/s00247-016-3741-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-016-3741-5

Keywords

Navigation