Skip to main content

Advertisement

Log in

Quantitative CT characterization of pediatric lung development using routine clinical imaging

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

The use of quantitative CT analysis in children is limited by lack of normal values of lung parenchymal attenuation. These characteristics are important because normal lung development yields significant parenchymal attenuation changes as children age.

Objective

To perform quantitative characterization of normal pediatric lung parenchymal X-ray CT attenuation under routine clinical conditions in order to establish a baseline comparison to that seen in pathological lung conditions.

Materials and methods

We conducted a retrospective query of normal CT chest examinations in children ages 0–7 years from 2004 to 2014 using standard clinical protocol. During these examinations semi-automated lung parenchymal segmentation was performed to measure lung volume and mean lung attenuation.

Results

We analyzed 42 CT examinations in 39 children, ages 3 days to 83 months (mean ± standard deviation [SD] = 42 ± 27 months). Lung volume ranged 0.10–1.72 liters (L). Mean lung attenuation was much higher in children younger than 12 months, with values as high as –380 Hounsfield units (HU) in neonates (lung volume 0.10 L). Lung volume decreased to approximately –650 HU by age 2 years (lung volume 0.47 L), with subsequently slower exponential decrease toward a relatively constant value of –860 HU as age and lung volume increased.

Conclusion

Normal lung parenchymal X-ray CT attenuation decreases with increasing lung volume and age; lung attenuation decreases rapidly in the first 2 years of age and more slowly thereafter. This change in normal lung attenuation should be taken into account as quantitative CT methods are translated to pediatric pulmonary imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Madani A, Keyzer C, Gevenois PA (2001) Quantitative computed tomography assessment of lung structure and function in pulmonary emphysema. Eur Respir J 18:720–730

    Article  CAS  PubMed  Google Scholar 

  2. Coxson HO, Rogers RM (2005) Quantitative computed tomography of chronic obstructive pulmonary disease. Acad Radiol 12:1457–1463

    Article  PubMed  Google Scholar 

  3. van Beek EJ, Dahmen AM, Stavngaard T et al (2009) Hyperpolarised 3He MRI versus HRCT in COPD and normal volunteers: PHIL trial. Eur Respir J 34:1311–1321

    Article  PubMed  Google Scholar 

  4. Gierada DS, Guniganti P, Newman BJ et al (2011) Quantitative CT assessment of emphysema and airways in relation to lung cancer risk. Radiology 261:950–959

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barr RG, Berkowitz EA, Bigazzi F et al (2012) A combined pulmonary-radiology workshop for visual evaluation of COPD: study design, chest CT findings and concordance with quantitative evaluation. COPD 9:151–159

    Article  PubMed  Google Scholar 

  6. Lynch DA, Al-Qaisi MA (2013) Quantitative computed tomography in chronic obstructive pulmonary disease. J Thorac Imaging 28:284–290

    Article  PubMed  PubMed Central  Google Scholar 

  7. Buckler AJ, Mulshine JL, Gottlieb R et al (2010) The use of volumetric CT as an imaging biomarker in lung cancer. Acad Radiol 17:100–106

    Article  PubMed  Google Scholar 

  8. Mulshine JL, Gierada DS, Armato SG 3rd et al (2015) Role of the Quantitative Imaging Biomarker Alliance in optimizing CT for the evaluation of lung cancer screen-detected nodules. J Am Coll Radiol 12:390–395

    Article  PubMed  Google Scholar 

  9. Bartholmai BJ, Raghunath S, Karwoski RA et al (2013) Quantitative computed tomography imaging of interstitial lung diseases. J Thorac Imaging 28:298–307

    Article  PubMed  Google Scholar 

  10. Coxson HO, Hogg JC, Mayo JR et al (1997) Quantification of idiopathic pulmonary fibrosis using computed tomography and histology. Am J Respir Crit Care Med 155:1649–1656

    Article  CAS  PubMed  Google Scholar 

  11. Witt CA, Sheshadri A, Carlstrom L et al (2014) Longitudinal changes in airway remodeling and air trapping in severe asthma. Acad Radiol 21:986–993

    Article  PubMed  PubMed Central  Google Scholar 

  12. Maldonado F, Moua T, Rajagopalan S et al (2014) Automated quantification of radiological patterns predicts survival in idiopathic pulmonary fibrosis. Eur Respir J 43:204–212

    Article  PubMed  Google Scholar 

  13. Kim HJ, Brown MS, Chong D et al (2015) Comparison of the quantitative CT imaging biomarkers of idiopathic pulmonary fibrosis at baseline and early change with an interval of 7 months. Acad Radiol 22:70–80

    Article  PubMed  Google Scholar 

  14. Matsuoka S, Yamashiro T, Matsushita S et al (2015) Quantitative CT evaluation in patients with combined pulmonary fibrosis and emphysema: correlation with pulmonary function. Acad Radiol 22:626–631

    Article  PubMed  Google Scholar 

  15. Dournes G, Laurent F (2012) Airway remodelling in asthma and COPD: findings, similarities, and differences using quantitative CT. Pulm Med 2012:670414

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jain N, Covar RA, Gleason MC et al (2005) Quantitative computed tomography detects peripheral airway disease in asthmatic children. Pediatr Pulmonol 40:211–218

    Article  PubMed  Google Scholar 

  17. Walker C, Gupta S, Hartley R et al (2012) Computed tomography scans in severe asthma: utility and clinical implications. Curr Opin Pulm Med 18:42–47

    Article  PubMed  PubMed Central  Google Scholar 

  18. Choi S, Hoffman EA, Wenzel SE et al (2014) Improved CT-based estimate of pulmonary gas trapping accounting for scanner and lung-volume variations in a multicenter asthmatic study. J Appl Physiol 117:593–603

    Article  PubMed  PubMed Central  Google Scholar 

  19. Burri PH (2006) Structural aspects of postnatal lung development - alveolar formation and growth. Biol Neonate 89:313–322

    Article  PubMed  Google Scholar 

  20. Mund SI, Stampanoni M, Schittny JC (2008) Developmental alveolarization of the mouse lung. Dev Dyn 237:2108–2116

    Article  PubMed  Google Scholar 

  21. Tschanz SA, Salm LA, Roth-Kleiner M et al (2014) Rat lungs show a biphasic formation of new alveoli during postnatal development. J Appl Physiol 117:89–95

    Article  PubMed  Google Scholar 

  22. Barre SF, Haberthur D, Stampanoni M et al (2014) Efficient estimation of the total number of acini in adult rat lung. Physiol Rep 2(7)

  23. Narayanan M, Owers-Bradley J, Beardsmore CS et al (2012) Alveolarization continues during childhood and adolescence: new evidence from helium-3 magnetic resonance. Am J Respir Crit Care Med 185:186–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schittny JC, Mund SI, Stampanoni M (2008) Evidence and structural mechanism for late lung alveolarization. Am J Physiol Lung Cell Mol Physiol 294:L246–L254

    Article  CAS  PubMed  Google Scholar 

  25. Rao L, Tiller C, Coates C et al (2010) Lung growth in infants and toddlers assessed by multi-slice computed tomography. Acad Radiol 17:1128–1135

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rosenthal M, Bain SH, Cramer D et al (1993) Lung function in white children aged 4 to 19 years: I—Spirometry. Thorax 48:794–802

  27. Rosenthal M, Cramer D, Bain SH et al (1993) Lung function in white children aged 4 to 19 years: II—Single breath analysis and plethysmography. Thorax 48:803–808

  28. Coppoletta JM, Wolbach SB (1933) Body length and organ weights of infants and children: a study of the body length and normal weights of the more important vital organs of the body between birth and twelve years of age. Am J Pathol 9:55–70

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cook CD, Hamann JF (1961) Relation of lung volumes to height in healthy persons between the ages of 5 and 38 years. J Pediatr 59:710–714

    Article  CAS  PubMed  Google Scholar 

  30. de Jong PA, Nakano Y, Lequin MH et al (2003) Estimation of lung growth using computed tomography. Eur Respir J 22:235–238

    Article  PubMed  Google Scholar 

  31. Rosenblum LJ, Mauceri RA, Wellenstein DE et al (1980) Density patterns in the normal lung as determined by computed tomography. Radiology 137:409–416

    Article  CAS  PubMed  Google Scholar 

  32. Hedlund L, Vock P, Effmann E (1983) Computed tomography of the lung. Densitometric studies. Radiol Clin North Am 21:775–788

    CAS  PubMed  Google Scholar 

  33. Lee JY, Shank B, Bonfiglio P et al (1984) CT analysis of lung density changes in patients undergoing total body irradiation prior to bone marrow transplantation. J Comput Assist Tomogr 8:885–891

    Article  CAS  PubMed  Google Scholar 

  34. Vock P, Malanowski D, Tschaeppeler H et al (1987) Computed tomographic lung density in children. Invest Radiol 22:627–631

    Article  CAS  PubMed  Google Scholar 

  35. Ringertz HG, Brasch RC, Gooding CA et al (1989) Quantitative density-time measurements in the lungs of children with suspected airway obstruction using ultrafast CT. Pediatr Radiol 19:366–370

    Article  CAS  PubMed  Google Scholar 

  36. Long FR, Williams RS, Castile RG (2005) Inspiratory and expiratory CT lung density in infants and young children. Pediatr Radiol 35:677–683

    Article  PubMed  Google Scholar 

  37. Long FR, Castile RG (2001) Technique and clinical applications of full-inflation and end-exhalation controlled-ventilation chest CT in infants and young children. Pediatr Radiol 31:413–422

    Article  CAS  PubMed  Google Scholar 

  38. Sarria EE, Mattiello R, Rao L et al (2012) Quantitative assessment of chronic lung disease of infancy using computed tomography. Eur Respir J 39:992–999

    Article  CAS  PubMed  Google Scholar 

  39. Bonnel AS, Song SM, Kesavarju K et al (2004) Quantitative air-trapping analysis in children with mild cystic fibrosis lung disease. Pediatr Pulmonol 38:396–405

    Article  PubMed  Google Scholar 

  40. de Jong PA, Nakano Y, Hop WC et al (2005) Changes in airway dimensions on computed tomography scans of children with cystic fibrosis. Am J Respir Crit Care Med 172:218–224

    Article  PubMed  Google Scholar 

  41. Goris ML, Zhu HJ, Blankenberg F et al (2003) An automated approach to quantitative air trapping measurements in mild cystic fibrosis. Chest 123:1655–1663

    Article  PubMed  Google Scholar 

  42. Loeve M, Rosenow T, Gorbunova V et al (2015) Reversibility of trapped air on chest computed tomography in cystic fibrosis patients. Eur J Radiol 84:1184–1190

    Article  PubMed  Google Scholar 

  43. Rosenow T, Oudraad MC, Murray CP et al (2015) PRAGMA-CF. A quantitative structural lung disease computed tomography outcome in young children with cystic fibrosis. Am J Respir Crit Care Med 191:1158–1165

    Article  PubMed  Google Scholar 

  44. DeBoer EM, Swiercz W, Heltshe SL et al (2014) Automated CT scan scores of bronchiectasis and air trapping in cystic fibrosis. Chest 145:593–603

    Article  PubMed  Google Scholar 

  45. Strauss KJ, Goske MJ, Kaste SC et al (2010) Image Gently: ten steps you can take to optimize image quality and lower CT dose for pediatric patients. AJR Am J Roentgenol 194:868–873

  46. Callahan MJ (2011) CT dose reduction in practice. Pediatr Radiol 41:488–492

    Article  PubMed  Google Scholar 

  47. Frush DP (2014) Overview of CT technologies for children. Pediatr Radiol 44:422–426

    Article  PubMed  Google Scholar 

  48. Nelson TR (2014) Practical strategies to reduce pediatric CT radiation dose. J Am Coll Radiol 11:292–299

    Article  PubMed  Google Scholar 

  49. Brenner DJ, Elliston CD, Hall EJ et al (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 176:289–296

    Article  CAS  PubMed  Google Scholar 

  50. Brody AS, Frush DP, Huda W et al (2007) Radiation risk to children from computed tomography. Pediatrics 120:677–682

    Article  PubMed  Google Scholar 

  51. Miglioretti DL, Johnson E, Williams A et al (2013) The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 167:700–707

    Article  PubMed  PubMed Central  Google Scholar 

  52. Colagrande S, Origgi D, Zatelli G et al (2014) CT exposure in adult and paediatric patients: a review of the mechanisms of damage, relative dose and consequent possible risks. Radiol Med 119:803–810

    Article  PubMed  Google Scholar 

  53. Yoon SH, Goo JM, Goo HW (2013) Quantitative thoracic CT techniques in adults: can they be applied in the pediatric population? Pediatr Radiol 43:308–314

    Article  PubMed  Google Scholar 

  54. Xu Y, Sonka M, McLennan G et al (2006) MDCT-based 3-D texture classification of emphysema and early smoking related lung pathologies. IEEE Trans Med Imaging 25:464–475

    Article  CAS  PubMed  Google Scholar 

  55. Coxson HO, Mayo JR, Behzad H et al (1995) Measurement of lung expansion with computed tomography and comparison with quantitative histology. J Appl Physiol 79:1525–1530

    CAS  PubMed  Google Scholar 

  56. Hoffman EA (1985) Effect of body orientation on regional lung expansion: a computed tomographic approach. J Appl Physiol 59:468–480

    CAS  PubMed  Google Scholar 

  57. Zach JA, Newell JD Jr, Schroeder J et al (2012) Quantitative computed tomography of the lungs and airways in healthy nonsmoking adults. Invest Radiol 47:596–602

    Article  PubMed  PubMed Central  Google Scholar 

  58. Verschakelen JA, Van Fraeyenhoven L, Laureys G et al (1993) Differences in CT density between dependent and nondependent portions of the lung: influence of lung volume. AJR Am J Roentgenol 161:713–717

    Article  CAS  PubMed  Google Scholar 

  59. Gevenois PA, Scillia P, de Maertelaer V et al (1996) The effects of age, sex, lung size, and hyperinflation on CT lung densitometry. AJR Am J Roentgenol 167:1169–1173

    Article  CAS  PubMed  Google Scholar 

  60. Castile R, Filbrun D, Flucke R et al (2000) Adult-type pulmonary function tests in infants without respiratory disease. Pediatr Pulmonol 30:215–227

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Laura L. Walkup, PhD, is supported by the National Institutes of Health (NIH) grant T32 HL007752.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason C. Woods.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stein, J.M., Walkup, L.L., Brody, A.S. et al. Quantitative CT characterization of pediatric lung development using routine clinical imaging. Pediatr Radiol 46, 1804–1812 (2016). https://doi.org/10.1007/s00247-016-3686-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-016-3686-8

Keywords

Navigation