Skip to main content

Advertisement

Log in

Prospective detection of cortical dysplasia on clinical MRI in pediatric intractable epilepsy

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Cortical dysplasia is the most common cause of pediatric refractory epilepsy. MRI detection of epileptogenic lesion is associated with good postsurgical outcome. Additional electrophysiological information is suggested to be helpful in localization of cortical dysplasia. Educational measures were taken to increase the awareness of cortical dysplasia at our institution in the context of a recent International League Against Epilepsy (ILAE 2011) classification of cortical dysplasia.

Objective

To determine changes in the rate of prospective identification of cortical dysplasia on an initial radiology report and also evaluate the benefit of MRI review as part of a multidisciplinary epilepsy conference in identifying previously overlooked MRI findings.

Materials and methods

We retrospectively evaluated surgically treated children with refractory epilepsy from 2007 to 2014 with cortical dysplasia on histopathology. We analyzed the initial radiology report, preoperative MRI interpretation at multidisciplinary epilepsy conference and subsequent retrospective MRI review with knowledge of the resection site. We recorded additional electrophysiological data and the presence of lobar concordance with the MRI findings.

Results

Of 78 children (44 MRI lesional) evaluated, 18 had initially overlooked MRI findings. Comparing 2007–2010 to 2011–2014, there was improvement in the rate of overlooked findings on the initial radiology report (54% vs. 13% of lesional cases, respectively; P = 0.008). The majority (72%) were identified at a multidisciplinary conference with lobar concordance of findings with at least one additional electrophysiological investigation in 89%.

Conclusion

Awareness of current classification schemes of cortical dysplasia and image review in the context of a multidisciplinary conference can lead to improved MRI detection of cortical dysplasia in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Harvey AS, Cross JH, Shinnar S et al (2008) Defining the spectrum of international practice in pediatric epilepsy surgery patients. Epilepsia 49:146–155

    Article  PubMed  Google Scholar 

  2. Rowland NC, Englot DJ, Cage TA et al (2012) A meta-analysis of predictors of seizure freedom in the surgical management of focal cortical dysplasia. J Neurosurg 116:1035–1041

    Article  PubMed  Google Scholar 

  3. Leach JL, Miles L, Henkel DM et al (2014) Magnetic resonance imaging abnormalities in the resection region correlate with histopathological type, gliosis extent, and postoperative outcome in pediatric cortical dysplasia. J Neurosurg Pediatr 14:68–80

    Article  PubMed  Google Scholar 

  4. Fauser S, Essang C, Altenmuller DM et al (2015) Long-term seizure outcome in 211 patients with focal cortical dysplasia. Epilepsia 56:66–76

    Article  Google Scholar 

  5. Muhlebner A, Coras R, Kobow K et al (2012) Neuropathologic measurements in focal cortical dysplasias: validation of the ILAE 2011 classification system and diagnostic implications for MRI. Acta Neuropathol 123:259–272

    Article  PubMed  Google Scholar 

  6. Chen HH, Chen C, Hung SC et al (2014) Cognitive and epilepsy outcomes after epilepsy surgery caused by focal cortical dysplasia in children: early intervention maybe better. Childs Nerv Syst 30:1885–1895

    Article  PubMed  Google Scholar 

  7. Oluigbo CO, Wang J, Whitehead MT et al (2015) The influence of lesion volume, perilesion resection volume, and completeness of resection on seizure outcome after resective epilepsy surgery for cortical dysplasia in children. J Neurosurg Pediatr 15:644–650

    Article  PubMed  Google Scholar 

  8. Leach JL, Greiner HM, Miles L et al (2014) Imaging spectrum of cortical dysplasia in children. Semin Roentgenol 49:99–111

    Article  PubMed  Google Scholar 

  9. Mellerio C, Labeyrie MA, Chassoux F et al (2012) Optimizing MR imaging detection of type 2 focal cortical dysplasia: best criteria for clinical practice. AJNR Am J Neuroradiol 33:1932–1938

    Article  CAS  PubMed  Google Scholar 

  10. Colombo N, Tassi L, Galli C et al (2003) Focal cortical dysplasias: MR imaging, histopathologic, and clinical correlations in surgically treated patients with epilepsy. AJNR Am J Neuroradiol 24:724–733

    PubMed  Google Scholar 

  11. Salamon N, Kung J, Shaw SJ et al (2008) FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology 71:1594–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Itabashi H, Jin K, Iwasaki M et al (2014) Electro- and magneto-encephalographic spike source localization of small focal cortical dysplasia in the dorsal peri-rolandic region. Clin Neurophysiol 125:2358–2363

    Article  PubMed  Google Scholar 

  13. Funke ME, Moore K, Orrison WW Jr et al (2011) The role of magnetoencephalography in “nonlesional” epilepsy. Epilepsia 52:10–14

    Article  PubMed  Google Scholar 

  14. Palmini A, Najm I, Avanzini G et al (2004) Terminology and classification of the cortical dysplasias. Neurology 62:S2–S8

    Article  CAS  PubMed  Google Scholar 

  15. Blumcke I, Thom M, Aronica E et al (2011) The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia 52:158–174

    Article  PubMed  Google Scholar 

  16. Miles L, Greiner HM, Miles MV et al (2013) Interaction between akt1-positive neurons and age at surgery is associated with surgical outcome in children with isolated focal cortical dysplasia. J Neuropathol Exp Neurol 72:884–891

    Article  PubMed  Google Scholar 

  17. Seo JH, Holland K, Rose D et al (2011) Multimodality imaging in the surgical treatment of children with nonlesional epilepsy. Neurology 76:41–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Knake S, Triantafyllou C, Wald LL et al (2005) 3T phased array MRI improves the presurgical evaluation in focal epilepsies: a prospective study. Neurology 65:1026–1031

    Article  CAS  PubMed  Google Scholar 

  19. Pinto A, Brunese L (2010) Spectrum of diagnostic errors in radiology. World J Radiol 2:377–383

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hong SJ, Kim H, Schrader D et al (2014) Automated detection of cortical dysplasia type II in MRI-negative epilepsy. Neurology 83:48–55

    Article  PubMed  PubMed Central  Google Scholar 

  21. Johnson AM, Sugo E, Barreto D et al (2014) Clinicopathological associations in temporal lobe epilepsy patients utilising the current ILAE focal cortical dysplasia classification. Epilepsy Res 108:1345–1351

    Article  PubMed  Google Scholar 

  22. Garbelli R, Milesi G, Medici V et al (2012) Blurring in patients with temporal lobe epilepsy: clinical, high-field imaging and ultrastructural study. Brain 135:2337–2349

    Article  PubMed  Google Scholar 

  23. Lee JJ, Kang WJ, Lee DS et al (2005) Diagnostic performance of 18F-FDG PET and ictal 99mTc-HMPAO SPET in pediatric temporal lobe epilepsy: quantitative analysis by statistical parametric mapping, statistical probabilistic anatomical map, and subtraction ictal SPET. Seizure 14:213–220

    Article  PubMed  Google Scholar 

  24. Lee SK, Lee SY, Kim KK et al (2005) Surgical outcome and prognostic factors of cryptogenic neocortical epilepsy. Ann Neurol 58:525–532

    Article  PubMed  Google Scholar 

  25. Kim YK, Lee DS, Lee SK et al (2002) (18)F-FDG PET in localization of frontal lobe epilepsy: comparison of visual and SPM analysis. J Nucl Med 43:1167–1174

    PubMed  Google Scholar 

  26. Muzik O, Chugani DC, Juhasz C et al (2000) Statistical parametric mapping: assessment of application in children. Neuroimage 12:538–549

    Article  CAS  PubMed  Google Scholar 

  27. Tan KM, Britton JW, Buchhalter JR et al (2008) Influence of subtraction ictal SPECT on surgical management in focal epilepsy of indeterminate localization: a prospective study. Epilepsy Res 82:190–193

    Article  PubMed  Google Scholar 

  28. Matsuda H, Matsuda K, Nakamura F et al (2009) Contribution of subtraction ictal SPECT coregistered to MRI to epilepsy surgery: a multicenter study. Ann Nucl Med 23:283–291

    Article  PubMed  Google Scholar 

  29. Kim H, Lim BC, Jeong W et al (2012) Magnetoencephalography in pediatric lesional epilepsy surgery. J Korean Med Sci 27:668–673

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kim JT, Bai SJ, Choi KO et al (2009) Comparison of various imaging modalities in localization of epileptogenic lesion using epilepsy surgery outcome in pediatric patients. Seizure 18:504–510

    Article  PubMed  Google Scholar 

  31. Willmann O, Wennberg R, May T et al (2007) The contribution of 18F-FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy A meta-analysis. Seizure 16:509–520

    Article  CAS  PubMed  Google Scholar 

  32. Kurian M, Spinelli L, Delavelle J et al (2007) Multimodality imaging for focus localization in pediatric pharmacoresistant epilepsy. Epileptic Disord 9:20–31

    CAS  PubMed  Google Scholar 

  33. Pail M, Marecek R, Hermanova M et al (2012) The role of voxel-based morphometry in the detection of cortical dysplasia within the temporal pole in patients with intractable mesial temporal lobe epilepsy. Epilepsia 53:1004–1012

    Article  PubMed  Google Scholar 

  34. Wilke M, Rose DF, Holland SK et al (2014) Multidimensional morphometric 3D MRI analyses for detecting brain abnormalities in children: impact of control population. Hum Brain Mapp 35:3199–3215

    Article  PubMed  Google Scholar 

  35. Widjaja E, Blaser S, Miller E et al (2007) Evaluation of subcortical white matter and deep white matter tracts in malformations of cortical development. Epilepsia 48:1460–1469

    Article  PubMed  Google Scholar 

  36. Bernasconi A, Bernasconi N, Bernhardt BC et al (2011) Advances in MRI for ‘cryptogenic’ epilepsies. Nat Rev Neurol 7:99–108

    Article  PubMed  Google Scholar 

  37. Roca P, Mellerio C, Chassoux F et al (2015) Sulcus-based MR analysis of focal cortical dysplasia located in the central region. PLoS One 10, e0122252

    Article  PubMed  PubMed Central  Google Scholar 

  38. Regis J, Tamura M, Park MC et al (2011) Subclinical abnormal gyration pattern, a potential anatomic marker of epileptogenic zone in patients with magnetic resonance imaging-negative frontal lobe epilepsy. Neurosurgery 69:80–93

  39. Mellerio C, Roca P, Chassoux F et al (2015) The power button sign: a newly described central sulcal pattern on surface rendering MR images of type 2 focal cortical dysplasia. Radiology 274:500–507

    Article  PubMed  Google Scholar 

  40. Madan N, Grant PE (2009) New directions in clinical imaging of cortical dysplasias. Epilepsia 50:9–18

    Article  PubMed  Google Scholar 

  41. Pan JW, Duckrow RB, Gerrard J et al (2013) 7T MR spectroscopic imaging in the localization of surgical epilepsy. Epilepsia 54:1668–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ahmed B, Brodley CE, Blackmon KE et al (2015) Cortical feature analysis and machine learning improves detection of “MRI-negative” focal cortical dysplasia. Epilepsy Behav 48:21–28

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupa Radhakrishnan.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhakrishnan, R., Leach, J.L., Mangano, F.T. et al. Prospective detection of cortical dysplasia on clinical MRI in pediatric intractable epilepsy. Pediatr Radiol 46, 1430–1438 (2016). https://doi.org/10.1007/s00247-016-3623-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-016-3623-x

Keywords

Navigation