Skip to main content
Log in

Strategies to minimize sedation in pediatric body magnetic resonance imaging

  • Pediatric Body MRI
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

The high soft-tissue contrast of MRI and the absence of ionizing radiation make it a valuable tool for assessment of body pathology in children. Infants and young children are often unable to cooperate with awake MRI so sedation or general anesthesia might be required. However, given recent data on the costs and potential risks of anesthesia in young children, there is a need to try to decrease or avoid sedation in this population when possible. Child life specialists in radiology frequently use behavioral techniques and audiovisual support devices, and they practice with children and families using mock scanners to improve child compliance with MRI. Optimization of the MR scanner environment is also important to create a child-friendly space. If the child can remain inside the MRI scanner, a variety of emerging techniques can reduce the effect of involuntary motion. Using sequences with short acquisition times such as single-shot fast spin echo and volumetric gradient echo can decrease artifacts and improve image quality. Breath-holding, respiratory triggering and signal averaging all reduce respiratory motion. Emerging techniques such as radial and multislice k-space acquisition, navigator motion correction, as well as parallel imaging and compressed sensing reconstruction methods can further accelerate acquisition and decrease motion. Collaboration among radiologists, anesthesiologists, technologists, child life specialists and families is crucial for successful performance of MRI in young children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Karian VE, Burrows PE, Zurakowski D et al (2002) The development of a pediatric radiology sedation program. Pediatr Radiol 32:348–353

    Article  PubMed  Google Scholar 

  2. Malviya S, Voepel-Lewis T, Eldevik OP et al (2000) Sedation and general anaesthesia in children undergoing MRI and CT: adverse events and outcomes. Br J Anaesth 84:743–748

    Article  CAS  PubMed  Google Scholar 

  3. Arlachov Y, Ganatra RH (2012) Sedation/anaesthesia in paediatric radiology. Br J Radiol 85:e1018–e1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. American Academy of Pediatrics, American Academy of Pediatric Dentristry, Coté CJ et al (2006) Guidelines for monitoring and management of pediatric patients during and after sedation for diagnostic and therapeutic procedures: an update. Pediatrics 118:2587–2602

    Article  Google Scholar 

  5. Khan JJ, Donnelly LF, Koch BL et al (2007) A program to decrease the need for pediatric sedation for CT and MRI. Appl Radiol 36:30–33

    Google Scholar 

  6. Arthurs OJ, Sury M (2013) Anaesthesia or sedation for paediatric MRI: advantages and disadvantages. Curr Opin Anaesthesiol 26:489–494

    Article  CAS  PubMed  Google Scholar 

  7. Edwards AD, Arthurs OJ (2011) Paediatric MRI under sedation: is it necessary? What is the evidence for the alternatives? Pediatr Radiol 41:1353–1364

    Article  PubMed  Google Scholar 

  8. Slovis TL (2011) Sedation and anesthesia issues in pediatric imaging. Pediatr Radiol 41:514–516

    Article  PubMed  Google Scholar 

  9. Mason KP, Michna E, DiNardo JA et al (2002) Evolution of a protocol for ketamine-induced sedation as an alternative to general anesthesia for interventional radiologic procedures in pediatric patients. Radiology 225:457–465

    Article  PubMed  Google Scholar 

  10. Sanborn PA, Michna E, Zurakowski D et al (2005) Adverse cardiovascular and respiratory events during sedation of pediatric patients for imaging examinations. Radiology 237:288–294

    Article  PubMed  Google Scholar 

  11. Creeley C, Dikranian K, Dissen G et al (2013) Propofol-induced apoptosis of neurones and oligodendrocytes in fetal and neonatal rhesus macaque brain. Br J Anaesth 110:i29–i38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilder RT, Flick RP, Sprung J et al (2009) Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110:796–804

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rappaport BA, Suresh S, Hertz S et al (2015) Anesthetic neurotoxicity — clinical implications of animal models. N Engl J Med 372:796–797

    Article  CAS  PubMed  Google Scholar 

  14. Vanderby SA, Babyn PS, Carter MW et al (2010) Effect of anesthesia and sedation on pediatric MR imaging patient flow. Radiology 256:229–237

    Article  PubMed  Google Scholar 

  15. McGee K (2003) The role of a child life specialist in a pediatric radiology department. Pediatr Radiol 33:467–474

    Article  PubMed  Google Scholar 

  16. Goldberger GL, Wolfer J (1990) Helping children cope with health care procedures. Contemp Pediatr 7:141–162

    Google Scholar 

  17. Durand DJ, Young M, Nagy P et al (2015) Mandatory child life consultation and its impact on pediatric MRI workflow in an academic medical center. J Am Coll Radiol 12:594–598

    Article  PubMed  Google Scholar 

  18. Carbajal R, Chauvet X, Couderc S et al (1999) Randomised trial of analgesic effects of sucrose, glucose, and pacifiers in term neonates. BMJ 319:1393–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harned RK 2nd, Strain JD (2001) MRI-compatible audio/visual system: impact on pediatric sedation. Pediatr Radiol 31:247–250

    Article  PubMed  Google Scholar 

  20. Courtier J, Cardenas A, Tan C et al (2015) Non-anesthesia MR enterography in very young children — feasibility, technique and performance. J Pediatr Gastroenterol Nutr 60(6):754–61. doi:10.1097/MPG.0000000000000712

  21. De Bie HM, Boersma M, Wattjes MP et al (2010) Preparing children with a mock scanner training protocol results in high quality structural and functional MRI scans. Eur J Pediatr 169:1079–1085

    Article  PubMed  PubMed Central  Google Scholar 

  22. Barnea-Goraly N, Weinzimer SA, Ruedy KJ et al (2014) High success rates of sedation-free brain MRI scanning in young children using simple subject preparation protocols with and without a commercial mock scanner — the Diabetes Research in Children Network (DirecNet) experience. Pediatr Radiol 44:181–186

    Article  PubMed  PubMed Central  Google Scholar 

  23. Carter AJ, Greer ML, Gray SE et al (2010) Mock MRI: reducing the need for anaesthesia in children. Pediatr Radiol 40:1368–1374

    Article  PubMed  Google Scholar 

  24. Yang RK, Roth CG, Ward RJ et al (2010) Optimizing abdominal MR imaging: approaches to common problems. Radiographics 30:185–199

    Article  PubMed  Google Scholar 

  25. Chavhan GB, Babyn PS, Vasanawala SS (2013) Abdominal MR imaging in children: motion compensation, sequence optimization, and protocol organization. Radiographics 33:703–719

    Article  PubMed  Google Scholar 

  26. Ogden CL, Carroll MD, Kit BK et al (2014) Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 311:806–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Felmlee JP, Ehman RL (1987) Spatial presaturation: a method for suppressing flow artifacts and improving depiction of vascular anatomy in MR imaging. Radiology 164:559–564

    Article  CAS  PubMed  Google Scholar 

  28. Klessen C, Asbach P, Kroencke TJ et al (2005) Magnetic resonance imaging of the upper abdomen using a free-breathing T2-weighted turbo spin echo sequence with navigator triggered prospective acquisition correction. J Magn Reson Imaging 21:576–582

    Article  PubMed  Google Scholar 

  29. Vasanawala SS, Iwadate Y, Church DG et al (2010) Navigated abdominal T1-W MRI permits free-breathing image acquisition with less motion artifact. Pediatr Radiol 40:340–344

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wood ML, Runge VM, Henkelman RM (1988) Overcoming motion in abdominal MR imaging. AJR Am J Roentgenol 150:513–522

    Article  CAS  PubMed  Google Scholar 

  31. Epelman M, Dinan D, Gee MS et al (2013) Mullerian duct and related anomalies in children and adolescents. Magn Reson Imaging Clin N Am 21:773–789

    Article  PubMed  Google Scholar 

  32. Olpin JD, Heilbrun M (2010) Imaging of Mullerian duct anomalies. Top Magn Reson Imaging 21:225–235

    Article  PubMed  Google Scholar 

  33. Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3:823–833

    Article  CAS  PubMed  Google Scholar 

  34. Katayama M, Masui T, Kobayashi S et al (2001) Fat-suppressed T2-weighted MRI of the liver: comparison of respiratory-triggered fast spin-echo, breath-hold single-shot fast spin-echo, and breath-hold fast-recovery fast spin-echo sequences. J Magn Reson Imaging 14:439–449

    Article  CAS  PubMed  Google Scholar 

  35. Dutka MV, Bergin D, O’Kane PL et al (2008) Rapid multiplanar abdominal survey using MRI with the steady-state free-precession technique. J Magn Reson Imaging 27:198–203

    Article  PubMed  Google Scholar 

  36. Malamateniou C, Malik SJ, Counsell SJ et al (2013) Motion-compensation techniques in neonatal and fetal MR imaging. AJNR Am J Neuroradiol 34:1124–1136

    Article  CAS  PubMed  Google Scholar 

  37. Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42:963–969

    Article  CAS  PubMed  Google Scholar 

  38. Forbes KP, Pipe JG, Bird CR et al (2001) PROPELLER MRI: clinical testing of a novel technique for quantification and compensation of head motion. J Magn Reson Imaging 14:215–222

    Article  CAS  PubMed  Google Scholar 

  39. Darge K, Anupindi SA, Jaramillo D (2011) MR imaging of the abdomen and pelvis in infants, children, and adolescents. Radiology 261:12–29

    Article  PubMed  Google Scholar 

  40. Hirokawa Y, Isoda H, Maetani YS et al (2008) MRI artifact reduction and quality improvement in the upper abdomen with PROPELLER and prospective acquisition correction (PACE) technique. AJR Am J Roentgenol 191:1154–1158

    Article  PubMed  Google Scholar 

  41. Chandarana H, Block TK, Rosenkrantz AB et al (2011) Free-breathing radial 3D fat-suppressed T1-weighted gradient echo sequence: a viable alternative for contrast-enhanced liver imaging in patients unable to suspend respiration. Invest Radiol 46:648–653

    Article  PubMed  Google Scholar 

  42. Glockner JF, Hu HH, Stanley DW et al (2005) Parallel MR imaging: a user’s guide. Radiographics 25:1279–1297

    Article  PubMed  Google Scholar 

  43. Keil B, Wald LL (2013) Massively parallel MRI detector arrays. J Magn Reson 229:75–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Breuer FA, Blaimer M, Heidemann RM et al (2005) Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med 53:684–691

    Article  PubMed  Google Scholar 

  45. Keil B, Alagappan V, Mareyam A et al (2011) Size-optimized 32-channel brain arrays for 3 T pediatric imaging. Magn Reson Med 66:1777–1787

    Article  PubMed  PubMed Central  Google Scholar 

  46. Feinberg DA, Setsompop K (2013) Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. J Magn Reson 229:90–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Obele CC, Glielmi C, Ream J et al (2015) Simultaneous multislice accelerated free-breathing diffusion-weighted imaging of the liver at 3 T. Abdom Imaging 40:2323–2330

    Article  PubMed  Google Scholar 

  48. Vasanawala SS, Alley MT, Hargreaves BA et al (2010) Improved pediatric MR imaging with compressed sensing. Radiology 256:607–616

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang T, Chowdhury S, Lustig M et al (2014) Clinical performance of contrast enhanced abdominal pediatric MRI with fast combined parallel imaging compressed sensing reconstruction. J Magn Reson Imaging 40:13–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cheng JY, Zhang T, Ruangwattanapaisarn N et al (2015) Free-breathing pediatric MRI with nonrigid motion correction and acceleration. J Magn Reson Imaging 42:407–420

    Article  PubMed  Google Scholar 

  51. McDonald RJ, McDonald JS, Kallmes DF et al (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275:772–782

    Article  PubMed  Google Scholar 

  52. Sadowski EA, Bennett LK, Chan MR et al (2007) Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 243:148–157

    Article  PubMed  Google Scholar 

  53. Ramalho M, Heredia V, de Campos RO et al (2012) In-phase and out-of-phase gradient-echo imaging in abdominal studies: intra-individual comparison of three different techniques. Acta Radiol 53:441–449

    Article  PubMed  Google Scholar 

  54. Mitchell CL, Vasanawala SS (2011) An approach to pediatric liver MRI. AJR Am J Roentgenol 196:W519–W526

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Shreyas Vasanawala, Jesse Courtier, Geetika Khanna, Sabah Servaes and Kawin Setsompop for providing images, and Katie Weagle for providing helpful suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Gee.

Ethics declarations

Conflicts of interest

The authors have no financial interests, investigational or off-label uses to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaimes, C., Gee, M.S. Strategies to minimize sedation in pediatric body magnetic resonance imaging. Pediatr Radiol 46, 916–927 (2016). https://doi.org/10.1007/s00247-016-3613-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-016-3613-z

Keywords

Navigation