Skip to main content

Advertisement

Log in

Magnetic resonance imaging of acquired disorders of the pediatric female pelvis other than neoplasm

  • Pediatric Body MRI
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Transabdominal US remains the primary screening imaging modality of the pediatric female pelvis. However, MRI has become an invaluable adjunct to US in recent years. MRI offers superb soft-tissue contrast resolution that allows for detailed evaluation, particularly of the ovaries and their associated pathology. MRI can yield diagnostic information that is similar to or even better than that of US, especially in nonsexually active girls in whom transvaginal US would be contraindicated. MRI is generally a second-line examination and is preferred over CT because it does not involve the use of ionizing radiation. MRI might be underutilized in this population, particularly in differentiating surgical from nonsurgical conditions. This article reviews the relevant anatomy and discusses imaging of acquired conditions that involve the pediatric female genital tract, illustrating associated pathology with case examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ratner ES, Staib LH, Cross SN et al (2015) The clinical impact of gynecologic MRI. AJR Am J Roentgenol 204:674–680

    Article  PubMed  Google Scholar 

  2. Nalaboff KM, Pellerito JS, Ben-Levi E (2001) Imaging the endometrium: disease and normal variants. Radiographics 21:1409–1424

    Article  CAS  PubMed  Google Scholar 

  3. Takeuchi M, Matsuzaki K, Harada M (2015) Susceptibility-weighted MRI of extra-ovarian endometriosis: preliminary results. Abdom Imaging 40:2512–2516

    Article  PubMed  Google Scholar 

  4. Cimsit C, Yoldemir T, Guclu M, Akpinar IN (2015) Susceptibility-weighted magnetic resonance imaging for the evaluation of deep infiltrating endometriosis: preliminary results. Acta Radiol. doi: 10.1177/0284185115602147

  5. Del Grande F, Santini F, Herzka DA et al (2014) Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system. Radiographics 34:217–233

    Article  PubMed  PubMed Central  Google Scholar 

  6. Servaes S, Victoria T, Lovrenski J et al (2010) Contemporary pediatric gynecologic imaging. Semin Ultrasound CT MR 31:116–140

    Article  PubMed  Google Scholar 

  7. Anthony EY, Caserta MP, Singh J et al (2012) Adnexal masses in female pediatric patients. AJR Am J Roentgenol 198:W426–W431

    Article  PubMed  Google Scholar 

  8. Langer JE, Oliver ER, Lev-Toaff AS et al (2012) Imaging of the female pelvis through the life cycle. Radiographics 32:1575–1597

    Article  PubMed  Google Scholar 

  9. Stranzinger E, Strouse PJ (2008) Ultrasound of the pediatric female pelvis. Semin Ultrasound CT MR 29:98–113

    Article  PubMed  Google Scholar 

  10. Garel L, Dubois J, Grignon A et al (2001) US of the pediatric female pelvis: a clinical perspective. Radiographics 21:1393–1407

    Article  CAS  PubMed  Google Scholar 

  11. Ratani RS, Cohen HL, Fiore E (2004) Pediatric gynecologic ultrasound. Ultrasound Q 20:127–139

    Article  PubMed  Google Scholar 

  12. McCarthy SM, Stark DD, Filly RA et al (1985) Obstetrical magnetic resonance imaging: maternal anatomy. Radiology 154:421–425

    Article  CAS  PubMed  Google Scholar 

  13. Scoutt LM, McCauley TR, Flynn SD et al (1993) Zonal anatomy of the cervix: correlation of MR imaging and histologic examination of hysterectomy specimens. Radiology 186:159–162

    Article  CAS  PubMed  Google Scholar 

  14. Rezvani M, Shabaan AM (2011) Fallopian tube disease in the nonpregnant patient. Radiographics 31:527–548

    Article  PubMed  Google Scholar 

  15. Brown M, Park AS, Shayya RF et al (2013) Ovarian imaging by magnetic resonance in adolescent girls with polycystic ovary syndrome and age-matched controls. J Magn Reson Imaging 38:689–693

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kenigsberg LE, Agarwal C, Sin S et al (2015) Clinical utility of magnetic resonance imaging and ultrasonography for diagnosis of polycystic ovary syndrome in adolescent girls. Fertil Steril 104:1302–1309

    Article  PubMed  Google Scholar 

  17. Bremer AA (2010) Polycystic ovary syndrome in the pediatric population. Metab Syndr Relat Disord 8:375–394

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lakhani K, Seifalian AM, Atiomo WU et al (2002) Polycystic ovaries. Br J Radiol 75:9–16

    Article  CAS  PubMed  Google Scholar 

  19. Tanaka YO, Tsunoda H, Kitagawa Y et al (2004) Functioning ovarian tumors: direct and indirect findings at MR imaging. Radiographics 24:S147–S166

    Article  PubMed  Google Scholar 

  20. Pfeifer SM, Kives S (2009) Polycystic ovary syndrome in the adolescent. Obstet Gynecol Clin N Am 36:129–152

    Article  Google Scholar 

  21. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group (2004) Revised 2003 consensus on diagnostic criteria and long‐term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 19:41–47

    Article  Google Scholar 

  22. Rosenfield RL (2015) The diagnosis of polycystic ovary syndrome in adolescents. Pediatrics 136:1154–1165

    Article  PubMed  Google Scholar 

  23. Rosenfield RL (2015) The polycystic ovary morphology-polycystic ovary syndrome spectrum. J Pediatr Adolesc Gynecol 28:412–419

    Article  PubMed  Google Scholar 

  24. Witchel SF, Oberfield S, Rosenfield RL et al (2015) The diagnosis of polycystic ovary syndrome during adolescence. Horm Res Paediatr. doi: 10.1159/000375530

  25. Huchon C, Fauconnier A (2010) Adnexal torsion: a literature review. Eur J Obstet Gynecol Reprod Biol 150:8–12

    Article  PubMed  Google Scholar 

  26. Cass DL (2005) Ovarian torsion. Semin Pediatr Surg 14:86–92

    Article  PubMed  Google Scholar 

  27. Servaes S, Zurakowski D, Laufer MR et al (2007) Sonographic findings of ovarian torsion in children. Pediatr Radiol 37:446–451

    Article  PubMed  Google Scholar 

  28. Oltmann SC, Fischer A, Barber R et al (2009) Cannot exclude torsion — a 15-year review. J Pediatr Surg 44:1212–1216

    Article  PubMed  Google Scholar 

  29. Piper HG, Oltmann SC, Xu L et al (2012) Ovarian torsion: diagnosis of inclusion mandates earlier intervention. J Pediatr Surg 47:2071–2076

    Article  PubMed  Google Scholar 

  30. Cohen SB, Oelsner G, Seidman DS et al (1999) Laparoscopic detorsion allows sparing of the twisted ischemic adnexa. J Am Assoc Gynecol Laparosc 6:139–143

    Article  CAS  PubMed  Google Scholar 

  31. Rha SE, Byun JY, Jung SE et al (2002) CT and MR imaging features of adnexal torsion. Radiographics 22:283–294

    Article  PubMed  Google Scholar 

  32. Lourenco AP, Swenson D, Tubbs RJ et al (2014) Ovarian and tubal torsion: imaging findings on US, CT, and MRI. Emerg Radiol 21:179–187

    Article  PubMed  Google Scholar 

  33. Duigenan S, Oliva E, Lee SI (2012) Ovarian torsion: diagnostic features on CT and MRI with pathologic correlation. AJR Am J Roentgenol 198:W122–W131

    Article  PubMed  Google Scholar 

  34. Bottomley C, Bourne T (2009) Diagnosis and management of ovarian cyst accidents. Best Pract Res Clin Obstet Gynaecol 23:711–724

    Article  PubMed  Google Scholar 

  35. Kanso HN, Hachem K, Aoun NJ et al (2006) Variable MR findings in ovarian functional hemorrhagic cysts. J Magn Reson Imaging 24:356–361

    Article  PubMed  Google Scholar 

  36. Lee NK, Kim S, Kim KH et al (2015) Diffusion-weighted magnetic resonance imaging in the differentiation of endometriomas from hemorrhagic cysts in the ovary. Acta Radiol. doi: 10.1177/0284185115609805

  37. Balaban M, Idilman IS, Toprak H et al (2015) The utility of diffusion-weighted magnetic resonance imaging in differentiation of endometriomas from hemorrhagic ovarian cysts. Clin Imaging 39:830–833

    Article  PubMed  Google Scholar 

  38. Centers for Disease Control and Prevention (2010) Sexually transmitted disease surveillance 2009. U.S. Department of Health and Human Services, Atlanta

    Google Scholar 

  39. Washington AE, Sweet RL, Shafer MA (1985) Pelvic inflammatory disease and its sequelae in adolescents. J Adolesc Health Care 6:298–310

    Article  CAS  PubMed  Google Scholar 

  40. Tukeva TA, Aronen HJ, Karjalainen PT et al (1999) MR imaging in pelvic inflammatory disease: comparison with laparoscopy and US. Radiology 210:209–216

    Article  CAS  PubMed  Google Scholar 

  41. Dohke M, Watanabe Y, Okumura A et al (2000) Comprehensive MR imaging of acute gynecologic diseases. Radiographics 20:1551–1566

    Article  CAS  PubMed  Google Scholar 

  42. Kim SH, Kim SH, Yang DM et al (2004) Unusual causes of tubo-ovarian abscess: CT and MR imaging findings. Radiographics 24:1575–1589

    Article  PubMed  Google Scholar 

  43. Pearl RH, Hale DA, Molloy M et al (1995) Pediatric appendectomy. J Pediatr Surg 30:173–178

    Article  CAS  PubMed  Google Scholar 

  44. Vyas RC, Sides C, Klein DJ et al (2008) The ectopic appendicolith from perforated appendicitis as a cause of tubo-ovarian abscess. Pediatr Radiol 38:1006–1008

    Article  PubMed  Google Scholar 

  45. Towbin AJ, Sullivan J, Denson LA et al (2013) CT and MR enterography in children and adolescents with inflammatory bowel disease. Radiographics 33:1843–1860

    Article  PubMed  Google Scholar 

  46. Schwartz DA, Loftus EV Jr, Tremaine WJ et al (2002) The natural history of fistulizing Crohn’s disease in Olmsted County, Minnesota. Gastroenterology 122:875–880

    Article  PubMed  Google Scholar 

  47. Tolan DJ, Greenhalgh R, Zealley IA et al (2010) MR enterographic manifestations of small bowel Crohn disease. Radiographics 30:367–384

    Article  PubMed  Google Scholar 

  48. Schmidt S, Chevallier P, Bessoud B et al (2007) Diagnostic performance of MRI for detection of intestinal fistulas in patients with complicated inflammatory bowel conditions. Eur Radiol 17:2957–2963

    Article  CAS  PubMed  Google Scholar 

  49. Howard FM (1993) The role of laparoscopy in chronic pelvic pain: promise and pitfalls. Obstet Gynecol Surv 48:357–387

    Article  CAS  PubMed  Google Scholar 

  50. Takeuchi M, Matsuzaki K (2011) Adenomyosis: usual and unusual imaging manifestations, pitfalls, and problem-solving MR imaging techniques. Radiographics 31:99–115

    Article  PubMed  Google Scholar 

  51. Byun JY, Kim SE, Choi BG et al. (1999) Diffuse and focal adenomyosis: MR imaging findings. Radiographics 19 Spec No: S161–170

  52. Ho ML, Raptis C, Hulett R et al (2008) Adenomyotic cyst of the uterus in an adolescent. Pediatr Radiol 38:1239–1242

    Article  PubMed  Google Scholar 

  53. Laufer MR, Goitein L, Bush M et al (1997) Prevalence of endometriosis in adolescent girls with chronic pelvic pain not responding to conventional therapy. J Pediatr Adolesc Gynecol 10:199–202

    Article  CAS  PubMed  Google Scholar 

  54. Kunz G, Beil D, Huppert P et al (2005) Adenomyosis in endometriosis — prevalence and impact on fertility. Evidence from magnetic resonance imaging. Hum Reprod 20:2309–2316

    Article  CAS  PubMed  Google Scholar 

  55. Siegelman ES, Oliver ER (2012) MR imaging of endometriosis: ten imaging pearls. Radiographics 32:1675–1691

    Article  PubMed  Google Scholar 

  56. Jensen JR, Coddington CC 3rd (2010) Evolving spectrum: the pathogenesis of endometriosis. Clin Obstet Gynecol 53:379–388

    Article  PubMed  Google Scholar 

  57. Corwin MT, Gerscovich EO, Lamba R et al (2014) Differentiation of ovarian endometriomas from hemorrhagic cysts at MR imaging: utility of the T2 dark spot sign. Radiology 271:126–132

    Article  PubMed  Google Scholar 

  58. Glastonbury CM (2002) The shading sign. Radiology 224:199–201

    Article  PubMed  Google Scholar 

  59. Coutinho A Jr, Bittencourt LK, Pires CE et al (2011) MR imaging in deep pelvic endometriosis: a pictorial essay. Radiographics 31:549–567

    Article  PubMed  Google Scholar 

  60. Moyle PL, Kataoka MY, Nakai A et al (2010) Nonovarian cystic lesions of the pelvis. Radiographics 30:921–938

    Article  PubMed  Google Scholar 

  61. Wood SC (2015) Clinical manifestations and therapeutic management of vulvar cellulitis and abscess: methicillin-resistant Staphylococcus aureus, necrotizing fasciitis, Bartholin abscess, Crohn disease of the vulva, hidradenitis suppurativa. Clin Obstet Gynecol 58:503–511

    Article  PubMed  Google Scholar 

  62. Stricker T, Navratil F, Sennhauser FH (2004) Vaginal foreign bodies. J Paediatr Child Health 40:205–207

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Epelman.

Ethics declarations

Conflicts of interest

The authors have no financial interests, investigational or off-label uses to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cox, M., Gould, S.W., Podberesky, D.J. et al. Magnetic resonance imaging of acquired disorders of the pediatric female pelvis other than neoplasm. Pediatr Radiol 46, 806–817 (2016). https://doi.org/10.1007/s00247-016-3595-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-016-3595-x

Keywords

Navigation