Skip to main content
Log in

Current role of body MRI in pediatric oncology

  • Pediatric Body MRI
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) plays an important role in the imaging of children with non-central nervous system malignancies, and it is increasingly replacing or complementing CT in many cases. MRI has several advantages over CT, including superior contrast resolution as well as superior tissue characterization with the use of novel pulse sequences and functional or organ-specific contrast agents. In addition, the lack of ionizing radiation — an important consideration in children — allows for multiphase dynamic post-contrast imaging, which can be useful for lesion detection and characterization. Several challenges remain in the performance of MRI in pediatric oncology patients, including the frequent need for sedation or anesthesia in young children because of long imaging times, as well as the suboptimal imaging of the lungs in the evaluation for pulmonary metastatic disease. However, despite these challenges, with continued improvements in MRI image quality and the development of novel sequences, contrast agents and quantitative imaging techniques, MRI is expected to play an ever increasing role in the imaging of pediatric oncology patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Semelka RC, Martin DR, Balci C (2011) Focal liver lesions: comparison of dual-phase CT and multisequence multiplanar MR imaging including dynamic gadolinium enhancement. J Magn Reson Imaging 13:397–401

    Article  Google Scholar 

  2. Yang HL, Liu T, Wang XM et al (2011) Diagnosis of bone metastases: a meta-analysis comparing FDG PET, CT, MRI and bone scintigraphy. Eur Radiol 21:2604–2617

    Article  PubMed  Google Scholar 

  3. Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188:1622–1635

    Article  PubMed  Google Scholar 

  4. Hagmann P, Jonasson L, Madaer P et al (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26:S205–S223

    Article  PubMed  Google Scholar 

  5. Siegelman ES, Chauhan A (2014) MRI characterization of focal liver lesions. Magn Reson Clin N Am 22:295–313

    Article  Google Scholar 

  6. Outwater EK, Blasbalg R, Siegelman ES et al (1998) Detection of lipid intra-abdominal tissues with opposed-phase gradient echo images at 1.5 T: techniques and diagnostic importance. Radiographics 18:1465–1480

    Article  CAS  PubMed  Google Scholar 

  7. Soila KP, Viamonte M, Starewicz PM (1984) Chemical shift misregistration effect in magnetic resonance imaging. Radiology 153:819–820

    Article  CAS  PubMed  Google Scholar 

  8. Earls JP, Krinsky GA (1997) Abdominal and pelvic applications of opposed-phase MR imaging. AJR Am J Roentgenol 169:1071–1077

    Article  CAS  PubMed  Google Scholar 

  9. Fazel R, Krumholz HM, Wang Y et al (2009) Exposure to low-dose ionizing radiation from medical imaging procedures. New Engl J Med 361:849–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wiest PW, Locken JA, Heintz PH et al (2002) CT scanning: a major source of radiation exposure. Semin Ultrasound CT MR 23:402–410

    Article  PubMed  Google Scholar 

  11. Linton OW, Mettler FA Jr (2003) National Council on Radiation Protection and Measurements. National conference on dose reduction in CT, with an emphasis on pediatric patients. AJR Am J Roentgenol 181:321–329

    Article  PubMed  Google Scholar 

  12. Robison LL, Hudson MM (2014) Survivors of childhood and adolescent cancer: life-long risks and responsibilities. Nat Rev Cancer 14:61–70

    Article  CAS  PubMed  Google Scholar 

  13. Towbin AJ, Luo GG, Yin H et al (2011) Focal nodular hyperplasia in children, adolescents and young adults. Pediatr Radiol 41:341–349

    Article  PubMed  Google Scholar 

  14. Smith EA, Salisbury S, Martin R et al (2012) Incidence and etiology of new liver lesions in pediatric patients previously treated for malignancy. AJR Am J Roentgenol 199:186–191

    Article  PubMed  Google Scholar 

  15. Meyers AB, Towbin AJ, Serai S et al (2011) Characterization of pediatric liver lesions with gadoxetate disodium. Pediatr Radiol 41:1183–1197

    Article  PubMed  Google Scholar 

  16. Kolbe AB, Podberesky DJ, Zhang B et al (2015) The impact of hepatocyte phase imaging from infancy to young adulthood in patients with a known or suspected liver lesion. Pediatr Radiol 45:354–365

    Article  PubMed  Google Scholar 

  17. Van der Griend BF, Lister NA, McKenzie IM et al (2011) Postoperative mortality in children after 101,885 anesthetics at a tertiary pediatric hospital. Anesth Analg 112:1440–1447

    Article  PubMed  Google Scholar 

  18. DiMaggio C, Suns LS, Li G (2011) Early childhood exposure to anesthesia and risk of developmental and behavioral disorders in a sibling birth cohort. Anesth Analg 113:1143–1151

    Article  PubMed  PubMed Central  Google Scholar 

  19. Flick RP, Katusic SK, Colligan RC et al (2011) Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics 128:1053–1061

    Article  Google Scholar 

  20. Ko WR, Liaw YP, Huang JY et al (2014) Exposure to general anesthesia in early life and the risk of attention deficit/hyperactivity disorder development: a nationwide, retrospective matched cohort study. Paediatr Anaesth 24:741–748

    Article  PubMed  Google Scholar 

  21. Tyson ME, Bohl DD, Blickman JG (2014) A randomized controlled trial: child life services in pediatric imaging. Pediatr Radiol 44:1426–1432

    Article  PubMed  Google Scholar 

  22. Durand DJ, Young M, Nagy P et al (2015) Mandatory child life consultation and its impact on pediatric MRI workflow in an academic medical center. J Am Coll Radiol 12:594–598

    Article  PubMed  Google Scholar 

  23. Krohmer S, Sorge I, Krausse A et al (2010) Whole-body MRI for primary evaluation of malignant disease in children. Eur J Radiol 74:256–261

    Article  CAS  PubMed  Google Scholar 

  24. Schroeder T, Ruehm SG, Debatin JF et al (2005) Detection of pulmonary nodules using a 2D HASTE MR sequence: comparison with MDCT. AJR Am J Roentgenol 185:979–984

    Article  PubMed  Google Scholar 

  25. Gorkem SB, Coskun A, Yikilmaz A et al (2013) Evaluation of pediatric thoracic disorders: a comparison of unenhanced fast imaging sequence 1.5T MRI and contrast-enhanced MDCT. AJR Am J Roentgenol 200:1352–1357

    Article  PubMed  Google Scholar 

  26. Kocaoglu M, Bulakbasi N, Sanal HT et al (2010) Pediatric abdominal masses: diagnostic accuracy of diffusion weighted MRI. Magn Reson Imaging 28:629–636

    Article  PubMed  Google Scholar 

  27. Humphries PD, Sebire NJ, Siegel MJ et al (2007) Tumors in pediatric patients at diffusion-weighted MR imaging: apparent diffusion coefficient and tumor cellularity. Radiology 245:848–854

    Article  PubMed  Google Scholar 

  28. Gahr N, Darge K, Hahn G et al (2011) Diffusion-weighted MRI for differentiation of neuroblastoma and ganglioneuroblastoma/ganglioneuroma. Eur J Radiol 79:443–446

    Article  PubMed  Google Scholar 

  29. McDonald K, Sebire NJ, Anderson J et al (2011) Patterns of shift in ADC distributions in abdominal tumors during chemotherapy: a feasibility study. Pediatr Radiol 41:99–106

    Article  PubMed  Google Scholar 

  30. Reddick WE, Wang S, Xlong X et al (2001) Dynamic magnetic resonance imaging of regional contrast access as an additional prognostic factor in pediatric osteosarcoma. Cancer 91:2230–2237

    Article  CAS  PubMed  Google Scholar 

  31. Guo J, Reddick WE, Glass JO et al (2012) Dynamic contrast-enhanced magnetic resonance imaging as a prognostic factor in predicting event-free and overall survival in pediatric patients with osteosarcoma. Cancer 118:3776–3785

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ethan A. Smith.

Ethics declarations

Conflicts of interest

Authors disclose that the content of this article describes pharmaceuticals that are off-label: Gadofosveset trisodium (Ablavar) and gadoxetate disodium (Eovist) are not FDA-approved for use in children. The authors have no financial interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, E.A., Dillman, J.R. Current role of body MRI in pediatric oncology. Pediatr Radiol 46, 873–880 (2016). https://doi.org/10.1007/s00247-016-3560-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-016-3560-8

Keywords

Navigation