Skip to main content
Log in

Patient-specific dose calculations for pediatric CT of the chest, abdomen and pelvis

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Organ dose is essential for accurate estimates of patient dose from CT.

Objective

To determine organ doses from a broad range of pediatric patients undergoing diagnostic chest–abdomen–pelvis CT and investigate how these relate to patient size.

Materials and methods

We used a previously validated Monte Carlo simulation model of a Philips Brilliance 64 multi-detector CT scanner (Philips Healthcare, Best, The Netherlands) to calculate organ doses for 40 pediatric patients (M:F = 21:19; range 0.6–17 years). Organ volumes and positions were determined from the images using standard segmentation techniques. Non-linear regression was performed to determine the relationship between volume CT dose index (CTDIvol)-normalized organ doses and abdominopelvic diameter. We then compared results with values obtained from independent studies.

Results

We found that CTDIvol-normalized organ dose correlated strongly with exponentially decreasing abdominopelvic diameter (R2 > 0.8 for most organs). A similar relationship was determined for effective dose when normalized by dose-length product (R2 = 0.95). Our results agreed with previous studies within 12% using similar scan parameters (e.g., bowtie filter size, beam collimation); however results varied up to 25% when compared to studies using different bowtie filters.

Conclusion

Our study determined that organ doses can be estimated from measurements of patient size, namely body diameter, and CTDIvol prior to CT examination. This information provides an improved method for patient dose estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. National Council on Radiation Protection and Measurements (2009) Ionizing radiation exposure of the population of the United States. NCRP Report No. 160, National Council on Radiation Protection and Measurements, Bethesda

  2. Paterson A, Frush D (2007) Dose reduction in paediatric MDCT: general principles. Clin Radiol 62:507–517

    Article  CAS  PubMed  Google Scholar 

  3. National Research Council (2006) Health risks from exposure to low levels of ionising radiation: BEIR VII report. Washington, DC

  4. Brenner DJ (2002) Estimating cancer risks from pediatric CT: going from the qualitative to the quantitative. Pediatr Radiol 32:228–231

    Article  PubMed  Google Scholar 

  5. Brenner DJ, Elliston CD, Hall EJ et al (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 176:289–296

    Article  CAS  PubMed  Google Scholar 

  6. Goske MJ, Applegate KE, Boylan J et al (2008) Image GentlySM: a national education and communication campaign in radiology using the science of social marketing. J Am Coll Radiol 5:1200–1205

    Article  PubMed  Google Scholar 

  7. Strauss KJ, Goske MJ, Frush DP et al (2009) Image Gently vendor summit: working together for better estimates of pediatric radiation dose from CT. AJR Am J Roentgenol 192:1169–1175

    Article  PubMed  Google Scholar 

  8. McCollough C, Cody D, Edyvean S et al (2008) AAPM report 96: the measurement, reporting, and management of radiation dose in CT. Report of AAPM Task Group 23. American Association of Physicists in Medicine, College Park. http://www.aapm.org/pubs/reports/rpt_96.pdf. Accessed 28 Apr 2015

  9. Dixon RL (2003) A new look at CT dose measurement: beyond CTDI. Med Phys 30:1272–1280

    Article  PubMed  Google Scholar 

  10. McCollough CH (2008) CT dose: how to measure, how to reduce. Health Phys 95:508–517

    Article  CAS  PubMed  Google Scholar 

  11. McCollough CH, Leng S, Yu L et al (2011) CT dose index and patient dose: they are not the same thing. Radiology 259:311–316

    Article  PubMed Central  PubMed  Google Scholar 

  12. Boone J, Strauss K, Cody D et al (2011) AAPM report No. 204: size-specific dose estimates (SSDE) in pediatric and adult body CT examinations. American Association of Physicists in Medicine, College Park. http://www.aapm.org/pubs/reports/rpt_204.pdf. Accessed 28 Apr 2015

  13. Strauss K (2014) Dose indices: everybody wants a number. Pediatr Radiol 44:450–459

    Article  PubMed  Google Scholar 

  14. International Commission on Radiological Protection (2007) The 2007 recommendations of the International Commission on Radiological Protection, ICRP 103. Essen

  15. Shrimpton P, Hillier M, Lewis M et al (2006) National survey of doses from CT in the UK: 2003. Br J Radiol 79:968–980

    Article  CAS  PubMed  Google Scholar 

  16. Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257:158–166

    Article  PubMed  Google Scholar 

  17. DeMarco J, Cagnon C, Cody D et al (2005) A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms. Phys Med Biol 50:3989

    Article  CAS  PubMed  Google Scholar 

  18. Jarry G, DeMarco J, Beifuss U et al (2003) A Monte Carlo-based method to estimate radiation dose from spiral CT: from phantom testing to patient-specific models. Phys Med Biol 48:2645

    Article  CAS  PubMed  Google Scholar 

  19. Li X, Samei E, Segars WP et al (2011) Patient-specific radiation dose and cancer risk estimation in CT: part I. Development and validation of a Monte Carlo program. Med Phys 38:397

    Article  PubMed Central  PubMed  Google Scholar 

  20. Staton RJ, Lee C, Lee C et al (2006) Organ and effective doses in newborn patients during helical multislice computed tomography examination. Phys Med Biol 51:5151–5166

    Article  PubMed  Google Scholar 

  21. Turner AC, Zankl M, DeMarco JJ et al (2010) The feasibility of a scanner-independent technique to estimate organ dose from MDCT scans: using CTDI vol to account for differences between scanners. Med Phys 37:1816–1825

    Article  PubMed Central  PubMed  Google Scholar 

  22. Lee C, Kim KP, Long DJ et al (2012) Organ doses for reference pediatric and adolescent patients undergoing computed tomography estimated by Monte Carlo simulation. Med Phys 39:2129–2146

    Article  PubMed Central  PubMed  Google Scholar 

  23. Tian X, Li X, Segars WP et al (2013) Dose coefficients in pediatric and adult abdominopelvic CT based on 100 patient models. Phys Med Biol 58:8755

    Article  PubMed  Google Scholar 

  24. Tian X, Li X, Segars WP et al (2014) Pediatric chest and abdominopelvic CT: organ dose estimation based on 42 patient models. Radiology 270:535–547

    Article  PubMed Central  PubMed  Google Scholar 

  25. Li X, Samei E, Segars WP et al (2011) Patient-specific radiation dose and cancer risk for pediatric chest CT. Radiology 259:862–874

    Article  PubMed Central  PubMed  Google Scholar 

  26. DeMarco J, Cagnon C, Cody D et al (2007) Estimating radiation doses from multidetector CT using Monte Carlo simulations: effects of different size voxelized patient models on magnitudes of organ and effective dose. Phys Med Biol 52:2583

    Article  CAS  PubMed  Google Scholar 

  27. Li X, Samei E, Segars WP et al (2008) Patient-specific dose estimation for pediatric chest CT. Med Phys 35:5821

    Article  PubMed Central  PubMed  Google Scholar 

  28. Turner AC, Zhang D, Khatonabadi M et al (2011) The feasibility of patient size-corrected, scanner-independent organ dose estimates for abdominal CT exams. Med Phys 38:820–829

    Article  PubMed Central  PubMed  Google Scholar 

  29. Yushkevich P, Piven J, Hazlett H et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128

    Article  PubMed  Google Scholar 

  30. Petoussi-Henss N, Zankl M, Fill U et al (2002) The GSF family of voxel phantoms. Phys Med Biol 47:89

    Article  PubMed  Google Scholar 

  31. International Commission on Radiological Protection (1995) Basic anatomical and physiological data for use in radiological protection: the skeleton, ICRP 70. Pergamon Press, Oxford

    Google Scholar 

  32. Schneider U, Pedroni E, Lomax A (1996) The calibration of CT Hounsfield units for radiotherapy treatment planning. Phys Med Biol 41:111–124

    Article  CAS  PubMed  Google Scholar 

  33. Valentin J (2002) Basic anatomical and physiological data for use in radiological protection: reference values: ICRP Publication 89. Ann ICRP 32:1–277

    Article  Google Scholar 

  34. Carver DE, Kost SD, Fernald MJ et al (2015) Development and validation of a GEANT4 radiation transport code for CT dosimetry. Health Phys 108:419–428

    Article  CAS  PubMed  Google Scholar 

  35. Turner AC, Zhang D, Kim HJ et al (2009) A method to generate equivalent energy spectra and filtration models based on measurement for multidetector CT Monte Carlo dosimetry simulations. Med Phys 36:2154

    Article  PubMed Central  PubMed  Google Scholar 

  36. ICRU (1992) Photon, electron, proton and neutron interaction data for body tissue ICRU report 46. International Commission on Radiation Units and Measurements. Bethesda

  37. Cristy M, Eckerman KF (1987) Specific absorbed fractions of energy at various ages from internal photon sources. I. Methods. Oak Ridge National Laboratory, Oak Ridge. Available via crpk.ornl.gov/documents/tm8381v1.pdf. Accessed 31 May 2015

  38. Li X, Samei E, Segars WP et al (2011) Patient-specific radiation dose and cancer risk estimation in CT: part II. Application to patients. Med Phys 38:408–419

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant NIH/NCI 1 R01 CA155400-01A1 awarded by the National Institutes of Health, United States Department of Health and Human Services.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan D. Kost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kost, S.D., Fraser, N.D., Carver, D.E. et al. Patient-specific dose calculations for pediatric CT of the chest, abdomen and pelvis. Pediatr Radiol 45, 1771–1780 (2015). https://doi.org/10.1007/s00247-015-3400-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-015-3400-2

Keywords

Navigation