Skip to main content

Advertisement

Log in

Acquired pathology of the pediatric spine and spinal cord

  • Advances in Pediatric Neuroradiology
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Pediatric spine pathology poses a diagnostic challenge for radiologists. Acquired spine pathology often yields nonspecific signs and symptoms in children, especially in the younger age groups, and diagnostic delay can carry significant morbidity. This review is focused on some of the more common diagnostic dilemmas we face when attempting to evaluate and diagnose acquired pediatric spine anomalies in daily practice. An understanding of some of the key differentiating features of these disease processes in conjunction with pertinent history, physical exam, and advanced imaging techniques can indicate the correct diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Brandão S, Seixas D, Ayres-Basto M et al (2013) Comparing T1-weighted and T2-weighted three-point Dixon technique with conventional T1-weighted fat-saturation and short-tau inversion recovery (STIR) techniques for the study of the lumbar spine in a short-bore MRI machine. Clin Radiol 68:e617–623

    Article  PubMed  Google Scholar 

  2. Berglund J, Ahlström H, Johansson L et al (2011) Two-point Dixon method with flexible echo times. Magn Reson Med 65:994–1004

    Article  PubMed  Google Scholar 

  3. Ahmad M, Liu Y, Slavens ZW et al (2010) A method for automatic identification of water and fat images from a symmetrically sampled dual-echo Dixon technique. Magn Reson Imaging 28:427–433

    Article  PubMed  Google Scholar 

  4. Holdsworth SJ, Yeom K, Skare S et al (2011) Clinical application of readout-segmented-echo-planar imaging for diffusion-weighted imaging in pediatric brain. AJNR Am J Neuroradiol 32:1274–1279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Andre JB, Zaharchuk G, Saritas E et al (2012) Clinical evaluation of reduced field-of-view diffusion-weighted imaging of the cervical and thoracic spine and spinal cord. AJNR Am J Neuroradiol 33:1860–1866

    Article  CAS  PubMed  Google Scholar 

  6. Auerbach JD, Ahn J, Zgonis MH et al (2008) Streamlining the evaluation of low back pain in children. Clin Orthop Relat Res 466:1971–1977

    Article  PubMed Central  PubMed  Google Scholar 

  7. Bhatia NN, Chow G, Timon SJ et al (2008) Diagnostic modalities for the evaluation of pediatric back pain. J Pediatr Orthop 28:230–233

    Article  PubMed  Google Scholar 

  8. Rodriguez DP, Poussaint TY (2010) Imaging of back pain in children. AJNR Am J Neuroradiol 31:787–802

    Article  CAS  PubMed  Google Scholar 

  9. Miller R, Beck NA, Sampson NR et al (2013) Imaging modalities for low back pain in children: a review of spondyloysis [stet] and undiagnosed mechanical back pain. J Pediatri Orthop 33:282–288

    Article  Google Scholar 

  10. Davis PJC, Williams HJ (2008) The investigation and management of back pain in children. Arch Dis Child 93:73–83

    Article  CAS  Google Scholar 

  11. Boavida P, Muller L-S, Rosendahl K (2013) Magnetic resonance imaging of the immature skeleton. Acta Radiol 54:1007–1014

    Article  PubMed  Google Scholar 

  12. Jaramillo D (2010) Whole-body MR imaging, bone diffusion imaging: how and why? Pediatr Radiol 40:978–984

    Article  PubMed  Google Scholar 

  13. Grayev AM, Kissane J, Kanekar S (2014) Imaging approach to the cord T2 hyperintensity (myelopathy). Radiol Clin North Am 52:427–446

    Article  PubMed  Google Scholar 

  14. Brouwer PA, Lubout CM, van Dijk JM et al (2012) Cervical high-intensity intramedullary lesions in achondroplasia: aetiology, prevalence and clinical relevance. Eur Radiol 22:2264–2272

    Article  PubMed Central  PubMed  Google Scholar 

  15. Gold JJ, Levy ML, Crawford JR (2013) Giant plexiform neurofibroma causing asymptomatic cervical spinal cord compression in a child with neurofibromatosis type 1. BMJ Case Rep. doi:10.1136/bcr-2013-009799

    Google Scholar 

  16. Hirai T, Uchida K, Nakajima H et al (2013) The prevalence and phenotype of activated microglia/macrophages within the spinal cord of the hyperostotic mouse (twy/twy) changes in response to chronic progressive spinal cord compression: implications for human cervical compressive myelopathy. PLoS One 8:e64528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Rozzelle CJ, Aarabi B, Dhall SS et al (2013) Os odontoideum. Neurosurgery 72:159–169

    Article  PubMed  Google Scholar 

  18. Patchell RA, Tibbs PA, Regine WF et al (2005) Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet 366:643–648

    Article  PubMed  Google Scholar 

  19. Carlson G, Gorden C, Oliff H (2003) Sustained spinal cord compression part I: time-dependent effect on long-term pathophysiology. J Bone Joint Surg Am 85:86–94

    PubMed  Google Scholar 

  20. Raslan AM, Nemecek AN (2012) Controversies in the surgical management of spinal cord injuries. Neurol Res Int 2012:417834

    Article  PubMed Central  PubMed  Google Scholar 

  21. Pollono D, Tomarchia S, Drut R et al (2003) Spinal cord compression: a review of 70 pediatric patients. Pediatr Hematol Oncol 20:457–466

    Article  PubMed  Google Scholar 

  22. Ardern-Holmes S, Esrick E, Degar B et al (2011) Back pain and spinal cord compression: an uncommon presentation of childhood acute myeloid leukemia. J Pediatr Neurol 9:109–113

    Google Scholar 

  23. Goh C, Desmond PM, Phal PM (2014) MRI in transverse myelitis. J Magn Reson Imaging 40:1267–1279

    Article  PubMed  Google Scholar 

  24. Jayakrishnan MP, Krishnakumar P (2010) Clinical profile of acute disseminated encephalomyelitis in children. J Pediatr Neurosci 5:111–114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Alper G (2012) Acute disseminated encephalomyelitis. J Child Neurol 27:1408–1425

    Article  PubMed  Google Scholar 

  26. Zuccoli G, Panigrahy A, Sreedher G et al (2014) Vasogenic edema characterizes pediatric acute disseminated encephalomyelitis. Neuroradiology 56:679–684

    Article  PubMed  Google Scholar 

  27. Verhey LH, Branson HM, Makhija M et al (2010) Magnetic resonance imaging features of the spinal cord in pediatric multiple sclerosis: a preliminary study. Neuroradiology 52:1153–1162

    Article  PubMed  Google Scholar 

  28. Thurnher MM, Cartes-Zumelzu F, Mueller-Mang C (2007) Demyelinating and infectious diseases of the spinal cord. Neuroimaging Clin N Am 17:37–55

    Article  PubMed  Google Scholar 

  29. Eisele P, Szabo K, Griebe M et al (2012) Reduced diffusion in a subset of acute MS lesions: a serial multiparametric MRI study. AJNR Am J Neuroradiol 33:1369–1373

    Article  CAS  PubMed  Google Scholar 

  30. Bergamaschi R, Ghezzi A (2004) Devic's neuromyelitis optica: clinical features and prognostic factors. Neurol Sci 25:s364–s367

    Article  PubMed  Google Scholar 

  31. Boesen MS, Sellebjerg F, Blinkenberg M (2014) Onset symptoms in paediatric multiple sclerosis. Dan Med J 61:A4800

    PubMed  Google Scholar 

  32. Pérez-Cambrodí RJ, Gómez-Hurtado Cubillana AG, Merino-Suárez ML et al (2014) Optic neuritis in pediatric population: a review in current tendencies of diagnosis and management. J Optom 7:125–130

    Article  PubMed Central  PubMed  Google Scholar 

  33. Papadopoulos M, Verkman A (2012) NIH public access. Lancet Neurol 11:535–544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Lennon VA, Kryzer TJ, Pittock SJ et al (2005) IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 202:473–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Jarius S, Wildemann B (2010) AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance. Nat Rev Neurol 6:383–392

    Article  CAS  PubMed  Google Scholar 

  36. Barnett Y, Sutton IJ, Ghadiri M et al (2014) Conventional and advanced imaging in neuromyelitis optica. AJNR Am J Neuroradiol 35:1458–1466

    Article  CAS  PubMed  Google Scholar 

  37. Wang F, Liu Y, Duan Y et al (2011) Brain MRI abnormalities in neuromyelitis optica. Eur J Radiol 80:445–449

    Article  PubMed  Google Scholar 

  38. Roemer SF, Parisi JE, Lennon VA et al (2007) Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain 130:1194–1205

    Article  PubMed  Google Scholar 

  39. Collongues N, de Seze J (2011) Current and future treatment approaches for neuromyelitis optica. Ther Adv Neurol Disord 4:111–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Wingerchuk DM, Lennon VA, Lucchinetti CF et al (2007) The spectrum of neuromyelitis optica. Lancet Neurol 6:805–815

    Article  CAS  PubMed  Google Scholar 

  41. Wingerchuk DM, Lennon VA, Pittock SJ et al (2006) Revised diagnostic criteria for neuromyelitis optica. Neurology 66:1485–1489

    Article  CAS  PubMed  Google Scholar 

  42. Stettler S, El-Koussy M, Ritter B et al (2013) Non-traumatic spinal cord ischaemia in childhood — clinical manifestation, neuroimaging and outcome. Eur J Paediatr Neurol 17:176–184

    Article  PubMed  Google Scholar 

  43. Spencer SP, Brock TD, Matthews RR et al (2014) Three unique presentations of atraumatic spinal cord infarction in the pediatric emergency department. Pediatr Emerg Care 30:354–357

    Article  PubMed  Google Scholar 

  44. Piao Y-S, Lu D-H, Su Y-Y et al (2009) Anterior spinal cord infarction caused by fibrocartilaginous embolism. Neuropathology 29:172–175

    Article  PubMed  Google Scholar 

  45. Thurnher MM, Bammer R (2006) Diffusion-weighted MR imaging (DWI) in spinal cord ischemia. Neuroradiology 48:795–801

    Article  PubMed  Google Scholar 

  46. Mawad ME, Rivera V, Crawford S et al (1990) Spinal cord ischemia after resection of thoracoabdominal aortic aneurysms: MR findings in 24 patients. AJNR Am J Neuroradiol 11:987–991

  47. Beslow LA, Ichord RN, Zimmerman RA et al (2008) Role of diffusion MRI in diagnosis of spinal cord infarction in children. Neuropediatrics 39:188–191

    Article  CAS  PubMed  Google Scholar 

  48. Davis GA, Klug GL (2000) Acute-onset nontraumatic paraplegia in childhood: fibrocartilaginous embolism or acute myelitis? Childs Nerv Syst 16:551–554

    Article  CAS  PubMed  Google Scholar 

  49. Heckmann JG, Dütsch M, Struffert T et al (2007) Spinal cord infarction: a case of fibrocatilaginous embolism. Letter to the editor. Eur J Neurol 14:323–324

    Article  Google Scholar 

  50. Weidauer S, Nichtweiss M, Lanfermann H et al (2002) Spinal cord infarction: MR imaging and clinical features in 16 cases. Neuroradiology 44:851–857

    Article  PubMed  Google Scholar 

  51. Pravatà E, Cereda C, Gabutti A et al (2014) Late-onset cauda equina contrast enhancement: a rare magnetic resonance imaging finding in subacute spinal cord infarction. Spine J 14:3065–3066

    Article  PubMed  Google Scholar 

  52. Wolf VL, Lupo PJ, Lotze TE (2012) Pediatric acute transverse myelitis overview and differential diagnosis. J Child Neurol 27:1426–1436

    Article  PubMed  Google Scholar 

  53. Alper G, Petropoulou KA, Fitz CR et al (2011) Idiopathic acute transverse myelitis in children: an analysis and discussion of MRI findings. Mult Scler 17:74–80

    Article  PubMed Central  PubMed  Google Scholar 

  54. De Seze J, Lanctin C, Lebrun C et al (2005) Idiopathic acute transverse myelitis: application of the recent diagnostic criteria. Neurology 65:1950–1953

    Article  PubMed  Google Scholar 

  55. Román GC (2003) Proposed diagnostic criteria and nosology of acute transverse myelitis. Neurology 60:730–731, author reply 730–731

    Article  PubMed  Google Scholar 

  56. Pidcock FS, Krishnan C, Crawford TO et al (2007) Acute transverse myelitis in childhood: center-based analysis of 47 cases. Neurology 68:1474–1480

    Article  CAS  PubMed  Google Scholar 

  57. Thomas T, Branson HM, Verhey LH et al (2012) The demographic, clinical, and magnetic resonance imaging (MRI) features of transverse myelitis in children. J Child Neurol 27:11–21

    Article  PubMed  Google Scholar 

  58. Kokoska ER, Keller MS, Rallo MC et al (2001) Characteristics of pediatric cervical spine injuries. J Pediatr Surg 36:100–105

    Article  CAS  PubMed  Google Scholar 

  59. Brown RL, Brunn MA, Garcia VF (2001) Cervical spine injuries in children: a review of 103 patients treated consecutively at a level 1 pediatric trauma center. J Pediatr Surg 36:1107–1114

    Article  CAS  PubMed  Google Scholar 

  60. Booth TN (2012) Cervical spine evaluation in pediatric trauma. AJR Am J Roentgenol 198:W417–425

    Article  PubMed  Google Scholar 

  61. Choudhary AK, Ishak R, Zacharia TT et al (2014) Imaging of spinal injury in abusive head trauma: a retrospective study. Pediatr Radiol 44:1130–1140

    Article  PubMed  Google Scholar 

  62. Khanna G, El-Khoury GY (2007) Imaging of cervical spine injuries of childhood. Skeletal Radiol 36:477–494

    Article  PubMed  Google Scholar 

  63. Luck JF, Nightingale RW, Song Y et al (2013) Tensile failure properties of the perinatal, neonatal, and pediatric cadaveric cervical spine. Spine 38:E1–12

    Article  PubMed  Google Scholar 

  64. Egloff AM, Kadom N, Vezina G et al (2009) Pediatric cervical spine trauma imaging: a practical approach. Pediatr Radiol 39:447–456

    Article  PubMed  Google Scholar 

  65. Choudhary AK, Bradford RK, Dias MS et al (2012) Spinal subdural hemorrhage in abusive head trauma: a retrospective study. Radiology 262:216–223

    Article  PubMed  Google Scholar 

  66. Kadom N, Khademian Z, Vezina G et al (2014) Usefulness of MRI detection of cervical spine and brain injuries in the evaluation of abusive head trauma. Pediatr Radiol 44:839–848

    Article  PubMed  Google Scholar 

  67. Soderlund KA, Smith AB, Rushing EJ et al (2012) Radiologic-pathologic correlation of pediatric and adolescent spinal neoplasms: part 2, intradural extramedullary spinal neoplasms. AJR Am J Roentgenol 198:44–51

    Article  PubMed  Google Scholar 

  68. Smith AB, Soderlund KA, Rushing EJ et al (2012) Radiologic-pathologic correlation of pediatric and adolescent spinal neoplasms: part 1, intramedullary spinal neoplasms. AJR Am J Roentgenol 198:34–43

    Article  PubMed  Google Scholar 

  69. Kothbauer KF (2007) Neurosurgical management of intramedullary spinal cord tumors in children. Pediatr Neurosurg 43:222–235

    Article  PubMed  Google Scholar 

  70. Menashe SJ, Iyer RS (2013) Pediatric spinal neoplasia: a practical imaging overview of intramedullary, intradural, and osseous tumors. Curr Probl Diagn Radiol 42:249–265

    Article  PubMed  Google Scholar 

  71. Yaghi S, Gokdin M, Sethi H (2010) Tumefactive demyelination of the spinal cord. Acta Neurol Belg 110:206–208

    PubMed  Google Scholar 

  72. Neutel D, Teodoro T, Coelho M et al (2014) Spinal cord astrocytoma mimicking multifocal myelitis. J Spinal Cord Med 37:429–431

    Article  PubMed Central  PubMed  Google Scholar 

  73. Lowe GM (2000) Magnetic resonance imaging of intramedullary spinal cord tumors. J Neurooncol 47:195–210

    Article  CAS  PubMed  Google Scholar 

  74. Thurnher MM, Law M (2009) Diffusion-weighted imaging, diffusion-tensor imaging, and fiber tractography of the spinal cord. Magn Reson Imaging Clin N Am 17:225–244

    Article  PubMed  Google Scholar 

  75. Choudhri AF, Whitehead MT, Klimo P et al (2014) Diffusion tensor imaging to guide surgical planning in intramedullary spinal cord tumors in children. Neuroradiology 56:169–174

    Article  PubMed Central  PubMed  Google Scholar 

  76. Kahan H, Sklar EM, Post MJ et al (1996) MR characteristics of histopathologic subtypes of spinal ependymoma. AJNR Am J Neuroradiol 17:143–150

    CAS  PubMed  Google Scholar 

  77. Patel U, Pinto RS, Miller DC et al (1998) MR of spinal cord ganglioglioma. AJNR Am J Neuroradiol 19:879–887

    CAS  PubMed  Google Scholar 

  78. Samii M, Klekamp J (1994) Surgical results of 100 intramedullary tumors in relation to accompanying syringomyelia. Neurosurgery 35:865–873

  79. Huisman TA (2009) Pediatric tumors of the spine. Cancer Imaging 9:S45–48

    Article  PubMed Central  PubMed  Google Scholar 

  80. Houten JK, Cooper PR (2000) Spinal cord astrocytomas: presentation, management and outcome. J Neurooncol 47:219–224

    Article  CAS  PubMed  Google Scholar 

  81. Lober R, Sharma S, Bell B et al (2010) Pediatric primary intramedullary spinal cord glioblastoma. Rare Tumors 2:e48

    Article  PubMed Central  PubMed  Google Scholar 

  82. Packer RJ, MacDonald T, Vezina G (2008) Central nervous system tumors. Pediatr Clin North Am 55:121–145

    Article  PubMed  Google Scholar 

  83. Hayes LL, Jones RA, Palasis S et al (2012) Drop metastases to the pediatric spine revealed with diffusion-weighted MR imaging. Pediatr Radiol 42:1009–1013

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

The authors have no financial interests, investigational or off-label uses to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Palasis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palasis, S., Hayes, L.L. Acquired pathology of the pediatric spine and spinal cord. Pediatr Radiol 45 (Suppl 3), 420–432 (2015). https://doi.org/10.1007/s00247-015-3328-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-015-3328-6

Keywords

Navigation