Skip to main content

Advertisement

Log in

Neurometabolic diseases of childhood

  • Advances in Pediatric Neuroradiology
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Metabolic diseases affecting the pediatric brain are complex conditions, the underlying mechanisms leading to structural damage are diverse and the diagnostic imaging manifestations are often non-specific; hence early, sensitive and specific diagnosis can be challenging for the radiologist. However, misdiagnosis or a delayed diagnosis can result in a devastating, irreversible injury to the developing brain. Based upon the inborn error, neurometabolic diseases can be subdivided in various groups depending on the predominantly involved tissue (e.g., white matter in leukodystrophies or leukoencephalopathies), the involved metabolic processes (e.g., organic acidurias and aminoacidopathies) and primary age of the child at presentation (e.g., neurometabolic disorders of the newborn). This manuscript summarizes these topics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Schiffmann R, van der Knaap MS (2009) Invited article: an MRI-based approach to the diagnosis of white matter disorders. Neurology 72:750–759

    Article  PubMed Central  PubMed  Google Scholar 

  2. Patay Z (2005) Diffusion-weighted MR imaging in leukodystrophies. Eur Radiol 15:2284–2303

    Article  PubMed  Google Scholar 

  3. Bizzi A, Castelli G, Bugiani M et al (2008) Classification of childhood white matter disorders using proton MR spectroscopic imaging. AJNR Am J Neuroradiol 29:1270–1275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Van der Knaap MS, Wolf NI (2010) Hypomyelination versus delayed myelination. Ann Neurol 68:115

    Article  PubMed  Google Scholar 

  5. Steenweg ME, Vanderver A, Blaser S et al (2010) Magnetic resonance imaging pattern recognition in hypomyelinating disorders. Brain 133:2971–2982

    Article  PubMed Central  PubMed  Google Scholar 

  6. Pouwels PJ, Vanderver A, Bernard G et al (2014) Hypomyelinating leukodystrophies: translational research progress and prospects. Ann Neurol 76:5–19

    Article  PubMed  Google Scholar 

  7. Eichler FS, Itoh R, Barker PB et al (2002) Proton MR spectroscopic and diffusion tensor brain MR imaging in X-linked adrenoleukodystrophy: initial experience. Radiology 225:245–252

    Article  PubMed  Google Scholar 

  8. Loes DJ, Fatemi A, Melhem ER et al (2003) Analysis of MRI patterns aids prediction of progression in X-linked adrenoleukodystrophy. Neurology 61:369–374

    Article  CAS  PubMed  Google Scholar 

  9. Kim TS, Kim IO, Kim WS et al (1997) MR of childhood metachromatic leukodystrophy. AJNR Am J Neuroradiol 18:733–738

    CAS  PubMed  Google Scholar 

  10. Eichler F, Grodd W, Grant E et al (2009) Metachromatic leukodystrophy: a scoring system for brain MR imaging observations. AJNR Am J Neuroradiol 30:1893–1897

    Article  CAS  PubMed  Google Scholar 

  11. Groeschel S, Kehrer C, Engel C et al (2011) Metachromatic leukodystrophy: natural course of cerebral MRI changes in relation to clinical course. J Inherit Metab Dis 34:1095–1102

    Article  PubMed  Google Scholar 

  12. Groeschel S, Dali C, Clas P et al (2012) Cerebral gray and white matter changes and clinical course in metachromatic leukodystrophy. Neurology 79:1662–1670

    Article  PubMed Central  PubMed  Google Scholar 

  13. Rossi A, Biancheri R, Zara F et al (2008) Hypomyelination and congenital cataract: neuroimaging features of a novel inherited white matter disorder. AJNR Am J Neuroradiol 29:301–305

    Article  CAS  PubMed  Google Scholar 

  14. Iyer RS, Chaturvedi A, Pruthi S et al (2011) Medication neurotoxicity in children. Pediatr Radiol 41:1455–1464

    Article  PubMed  Google Scholar 

  15. Van der Knaap MS, Boor I, Estevez R (2012) Megalencephalic leukoencephalopathy with subcortical cysts: chronic white matter oedema due to a defect in brain ion and water homoeostasis. Lancet Neurol 11:973–985

    Article  PubMed  Google Scholar 

  16. Van der Knaap MS, Naidu S, Breiter SN et al (2001) Alexander disease: diagnosis with MR imaging. AJNR Am J Neuroradiol 22:541–552

    PubMed  Google Scholar 

  17. Van der Knaap MS, Salomons GS, Li R et al (2005) Unusual variants of Alexander′s disease. Ann Neurol 57:327–338

    Article  PubMed  Google Scholar 

  18. Testai FD, Gorelick PB (2010) Inherited metabolic disorders and stroke part 2: homocystinuria, organic acidurias, and urea cycle disorders. Arch Neurol 67:148–153

    PubMed  Google Scholar 

  19. Takanashi J, Barkovich AJ, Cheng SF et al (2003) Brain MR imaging in neonatal hyperammonemic encephalopathy resulting from proximal urea cycle disorders. AJNR Am J Neuroradiol 24:1184–1187

    PubMed  Google Scholar 

  20. Kara B, Albayram S, Tutar O et al (2009) Diffusion-weighted magnetic resonance imaging findings of a patient with neonatal citrullinemia during acute episode. Eur J Paediatr Neurol 13:280–282

    Article  PubMed  Google Scholar 

  21. Gropman A (2010) Brain imaging in urea cycle disorders. Mol Genet Metab 100:S20–30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Okanishi T, Ito T, Nakajima Y et al (2010) Parieto-occipital encephalomalacia in neonatal hyperammonemia with ornithine transcarbamylase deficiency: a case report. Brain Dev 32:567–570

    Article  PubMed  Google Scholar 

  23. Hoffmann GF, Kolker S (2013) Defects in amino acid catabolism and the urea cycle. Handb Clin Neurol 113:1755–1773

    Article  PubMed  Google Scholar 

  24. Greenberg CR, Prasad AN, Dilling LA et al (2002) Outcome of the first 3-years of a DNA-based neonatal screening program for glutaric acidemia type 1 in Manitoba and northwestern Ontario, Canada. Mol Genet Metab 75:70–78

    Article  CAS  PubMed  Google Scholar 

  25. Hoffmann GF, Athanassopoulos S, Burlina AB et al (1996) Clinical course, early diagnosis, treatment, and prevention of disease in glutaryl-CoA dehydrogenase deficiency. Neuropediatrics 27:115–123

    Article  CAS  PubMed  Google Scholar 

  26. Jan W, Zimmerman RA, Wang ZJ et al (2003) MR diffusion imaging and MR spectroscopy of maple syrup urine disease during acute metabolic decompensation. Neuroradiology 45:393–399

    Article  PubMed  Google Scholar 

  27. Righini A, Ramenghi LA, Parini R et al (2003) Water apparent diffusion coefficient and T2 changes in the acute stage of maple syrup urine disease: evidence of intramyelinic and vasogenic-interstitial edema. J Neuroimaging 13:162–165

    Article  PubMed  Google Scholar 

  28. Ha JS, Kim TK, Eun BL et al (2004) Maple syrup urine disease encephalopathy: a follow-up study in the acute stage using diffusion-weighted MRI. Pediatr Radiol 34:163–166

    Article  PubMed  Google Scholar 

  29. Parmar H, Sitoh YY, Ho L (2004) Maple syrup urine disease: diffusion-weighted and diffusion-tensor magnetic resonance imaging findings. J Comput Assist Tomogr 28:93–97

    Article  PubMed  Google Scholar 

  30. Cecil KM, DeGrauw TJ, Salomons GS et al (2003) Magnetic resonance spectroscopy in a 9-day-old heterozygous female child with creatine transporter deficiency. J Comput Assist Tomogr 27:44–47

    Article  PubMed  Google Scholar 

  31. Stockler S, Schutz PW, Salomons GS (2007) Cerebral creatine deficiency syndromes: clinical aspects, treatment and pathophysiology. Subcell Biochem 46:149–166

    Article  PubMed  Google Scholar 

  32. Nasrallah F, Feki M, Kaabachi N (2010) Creatine and creatine deficiency syndromes: biochemical and clinical aspects. Pediatr Neurol 42:163–171

    Article  PubMed  Google Scholar 

  33. Dinopoulos A, Cecil KM, Schapiro MB et al (2005) Brain MRI and proton MRS findings in infants and children with respiratory chain defects. Neuropediatrics 36:290–301

    Article  CAS  PubMed  Google Scholar 

  34. Huisman TA, Thiel T, Steinmann B et al (2002) Proton magnetic resonance spectroscopy of the brain of a neonate with nonketotic hyperglycinemia: in vivo-in vitro (ex vivo) correlation. Eur Radiol 12:858–861

    Article  CAS  PubMed  Google Scholar 

  35. Khong PL, Lam BC, Chung BH et al (2003) Diffusion-weighted MR imaging in neonatal nonketotic hyperglycinemia. AJNR Am J Neuroradiol 24:1181–1183

    PubMed  Google Scholar 

  36. Shah DK, Tingay DG, Fink AM et al (2005) Magnetic resonance imaging in neonatal nonketotic hyperglycinemia. Pediatr Neurol 33:50–52

    Article  PubMed  Google Scholar 

  37. Mourmans J, Majoie CB, Barth PG et al (2006) Sequential MR imaging changes in nonketotic hyperglycinemia. AJNR Am J Neuroradiol 27:208–211

    CAS  PubMed  Google Scholar 

  38. Culjat M, Benjak V, Dasovic-Buljevic A et al (2010) Magnetic resonance findings in a neonate with nonketotic hyperglycinemia: case report. J Comput Assist Tomogr 34:762–765

    Article  PubMed  Google Scholar 

  39. Steenweg ME, Salomons GS, Yapici Z et al (2009) L-2-hydroxyglutaric aciduria: pattern of MR imaging abnormalities in 56 patients. Radiology 251:856–865

    Article  PubMed  Google Scholar 

  40. Patay Z, Mills JC, Lobel U et al (2012) Cerebral neoplasms in L-2 hydroxyglutaric aciduria: 3 new cases and meta-analysis of literature data. AJNR Am J Neuroradiol 33:940–943

    Article  CAS  PubMed  Google Scholar 

  41. Seda Neto J, Leite KM, Porta A et al (2014) HCC prevalence and histopathological findings in liver explants of patients with hereditary tyrosinemia type 1. Pediatr Blood Cancer 61:1584–1589

    Article  CAS  PubMed  Google Scholar 

  42. Wang X, Jakobs C, Bawle EV (2003) D-2-hydroxyglutaric aciduria with absence of corpus callosum and neonatal intracranial haemorrhage. J Inherit Metab Dis 26:92–94

    Article  CAS  PubMed  Google Scholar 

  43. Kreis R, Zwygart K, Boesch C et al (2009) Reproducibility of cerebral phenylalanine levels in patients with phenylketonuria determined by 1H-MR spectroscopy. Magn Reson Med 62:11–16

    Article  CAS  PubMed  Google Scholar 

  44. Karimzadeh P, Jafari N, Ahmad Abadi F et al (2014) Propionic acidemia: diagnosis and neuroimaging findings of this neurometabolic disorder. Iran J Child Neurol 8:58–61

    PubMed Central  PubMed  Google Scholar 

  45. Dave P, Curless RG, Steinman L (1984) Cerebellar hemorrhage complicating methylmalonic and propionic acidemia. Arch Neurol 41:1293–1296

    Article  CAS  PubMed  Google Scholar 

  46. Velasco-Sanchez D, Gomez-Lopez L, Vilaseca MA et al (2009) Cerebellar hemorrhage in a patient with propionic acidemia. Cerebellum 8:352–354

    Article  PubMed  Google Scholar 

  47. Baker EH, Sloan JL, Hauser NS et al (2015) MRI characteristics of globus pallidus infarcts in isolated methylmalonic acidemia. AJNR Am J Neuroradiol 36:194–201

  48. Burton BK (1998) Inborn errors of metabolism in infancy: a guide to diagnosis. Pediatrics 102:E69

    Article  CAS  PubMed  Google Scholar 

  49. Saudubray JM, Nassogne MC, de Lonlay P et al (2002) Clinical approach to inherited metabolic disorders in neonates: an overview. Semin Neonatol 7:3–15

    Article  CAS  PubMed  Google Scholar 

  50. Saudubray JM, Sedel F, Walter JH (2006) Clinical approach to treatable inborn metabolic diseases: an introduction. J Inherit Metab Dis 29:261–274

    Article  PubMed  Google Scholar 

  51. Filiano JJ (2006) Neurometabolic diseases in the newborn. Clin Perinatol 33:411–479

    Article  PubMed  Google Scholar 

  52. Leonard JV, Morris AA (2006) Diagnosis and early management of inborn errors of metabolism presenting around the time of birth. Acta Paediatr 95:6–14

    Article  PubMed  Google Scholar 

  53. Poretti A, Blaser SI, Lequin MH et al (2013) Neonatal neuroimaging findings in inborn errors of metabolism. J Magn Reson Imaging 37:294–312

    Article  PubMed Central  PubMed  Google Scholar 

  54. Chuang DT, Shih VE (2001) Maple syrup urine disease (branched-chain keto-aciduria). In: Scriver CR, Beaudet AL, Valle D et al (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1971–2005

    Google Scholar 

  55. Leonard JV, Morris AA (2002) Urea cycle disorders. Semin Neonatol 7:27–35

    Article  CAS  PubMed  Google Scholar 

  56. Simon E, Fingerhut R, Baumkotter J et al (2006) Maple syrup urine disease: favourable effect of early diagnosis by newborn screening on the neonatal course of the disease. J Inherit Metab Dis 29:532–537

    Article  CAS  PubMed  Google Scholar 

  57. Gire C, Girard N, Nicaise C et al (2002) Clinical features and neuroradiological findings of mitochondrial pathology in six neonates. Childs Nerv Syst 18:621–628

    Article  CAS  PubMed  Google Scholar 

  58. Gibson K, Halliday JL, Kirby DM et al (2008) Mitochondrial oxidative phosphorylation disorders presenting in neonates: clinical manifestations and enzymatic and molecular diagnoses. Pediatrics 122:1003–1008

    Article  PubMed  Google Scholar 

  59. Fellman V, Suomalainen A (2011) Mitochondrial disorders in the perinatal period. Semin Fetal Neonatal Med 16:173–174

    Article  PubMed  Google Scholar 

  60. Barkovich AJ, Peck WW (1997) MR of Zellweger syndrome. AJNR Am J Neuroradiol 18:1163–1170

    CAS  PubMed  Google Scholar 

  61. Barth PG, Majoie CB, Gootjes J et al (2004) Neuroimaging of peroxisome biogenesis disorders (Zellweger spectrum) with prolonged survival. Neurology 62:439–444

    Article  CAS  PubMed  Google Scholar 

  62. Weller S, Rosewich H, Gartner J (2008) Cerebral MRI as a valuable diagnostic tool in Zellweger spectrum patients. J Inherit Metab Dis 31:270–280

    Article  CAS  PubMed  Google Scholar 

  63. Friedman SD, Ishak GE, Poliachik SL et al (2014) Callosal alterations in pyridoxine-dependent epilepsy. Dev Med Child Neurol 56:1106–1110

    Article  PubMed  Google Scholar 

  64. Pearl PL, Gospe SM Jr (2014) Pyridoxine or pyridoxal-5′-phosphate for neonatal epilepsy: the distinction just got murkier. Neurology 82:1392–1394

    Article  PubMed  Google Scholar 

  65. Leijser LM, de Vries LS, Rutherford MA et al (2007) Cranial ultrasound in metabolic disorders presenting in the neonatal period: characteristic features and comparison with MR imaging. AJNR Am J Neuroradiol 28:1223–1231

    Article  CAS  PubMed  Google Scholar 

  66. Miossec-Chauvet E, Mikaeloff Y, Heron D et al (2003) Neurological presentation in pediatric patients with congenital disorders of glycosylation type Ia. Neuropediatrics 34:1–6

    Article  CAS  PubMed  Google Scholar 

  67. Cohn RD, Eklund E, Bergner AL et al (2006) Intracranial hemorrhage as the initial manifestation of a congenital disorder of glycosylation. Pediatrics 118:e514–521

    Article  PubMed  Google Scholar 

  68. Ishikawa N, Tajima G, Ono H et al (2009) Different neuroradiological findings during two stroke-like episodes in a patient with a congenital disorder of glycosylation type Ia. Brain Dev 31:240–243

    Article  PubMed  Google Scholar 

  69. Feraco P, Mirabelli-Badenier M, Severino M et al (2012) The shrunken, bright cerebellum: a characteristic MRI finding in congenital disorders of glycosylation type 1a. AJNR Am J Neuroradiol 33:2062–2067

    Article  CAS  PubMed  Google Scholar 

  70. Caruso PA, Poussaint TY, Tzika AA et al (2004) MRI and 1H MRS findings in Smith–Lemli–Opitz syndrome. Neuroradiology 46:3–14

    Article  CAS  PubMed  Google Scholar 

  71. Lee RW, Conley SK, Gropman A et al (2013) Brain magnetic resonance imaging findings in Smith–Lemli–Opitz syndrome. Am J Med Genet A 161A:2407–2419

    PubMed  Google Scholar 

  72. Brockmann K, Dechent P, Wilken B et al (2003) Proton MRS profile of cerebral metabolic abnormalities in Krabbe disease. Neurology 60:819–825

    Article  CAS  PubMed  Google Scholar 

  73. Escolar ML, Poe MD, Smith JK et al (2009) Diffusion tensor imaging detects abnormalities in the corticospinal tracts of neonates with infantile Krabbe disease. AJNR Am J Neuroradiol 30:1017–1021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Abdelhalim AN, Alberico RA, Barczykowski AL et al (2014) Patterns of magnetic resonance imaging abnormalities in symptomatic patients with Krabbe disease correspond to phenotype. Pediatr Neurol 50:127–134

    Article  PubMed  Google Scholar 

  75. Poretti A, Meoded A, Bunge M et al (2014) Novel diffusion tensor imaging findings in Krabbe disease. Eur J Paediatr Neurol 18:150–156

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

Drs. Patay, Blaser, Poretti and Huisman have no financial interests, investigational or off-label uses to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry A. G. M. Huisman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patay, Z., Blaser, S.I., Poretti, A. et al. Neurometabolic diseases of childhood. Pediatr Radiol 45 (Suppl 3), 473–484 (2015). https://doi.org/10.1007/s00247-015-3279-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-015-3279-y

Keywords

Navigation