Pediatric Radiology

, Volume 46, Issue 7, pp 963–982 | Cite as

MR spectroscopy in children: protocols and pitfalls in non-tumorous brain pathology

  • Jacques F. SchneiderEmail author
Minisymposium: Pediatric MR Spectroscopy


Proton nuclear magnetic resonance spectroscopy (MRS) delivers information about cell content and metabolism in a noninvasive manner. The diagnostic strength of MRS lies in its evaluation of pathologies in combination with conventional magnetic resonance imaging (MRI). MRS in children has been most widely used to evaluate brain conditions like tumors, infections, metabolic diseases or learning disabilities and especially in neonates with hypoxic-ischemic encephalopathy. This article reviews some basic theoretical considerations, routine procedures, protocols and pitfalls and will illustrate the range of spectrum alterations occurring in some non-tumorous pediatric brain pathologies.


Metabolic diseases Developmental delay Hypoxic-ischemic encephalopathy Neonates Children Magnetic resonance spectroscopy 


Conflicts of interest



  1. 1.
    Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13:129–153CrossRefPubMedGoogle Scholar
  2. 2.
    Inglese M, Spindler M, Babb JS et al (2006) Field, coil, and echo-time influence on sensitivity and reproducibility of brain proton MR spectroscopy. AJNR Am J Neuroradiol 27:684–688PubMedGoogle Scholar
  3. 3.
    Jissendi Tchofo P, Baleriaux D (2009) Brain (1)H-MR spectroscopy in clinical neuroimaging at 3T. J Neuroradiol 36:24–40CrossRefPubMedGoogle Scholar
  4. 4.
    Frahm J, Michaelis T, Merboldt KD et al (1991) On the N-acetyl methyl resonance in localized 1H NMR spectra of human brain in vivo. NMR Biomed 4:201–204CrossRefPubMedGoogle Scholar
  5. 5.
    Ross B, Michaelis T (1994) Clinical applications of magnetic resonance spectroscopy. Magn Reson Q 10:191–247PubMedGoogle Scholar
  6. 6.
    Holshouser BA, Ashwal S, Shu S et al (2000) Proton MR spectroscopy in children with acute brain injury: comparison of short and long echo time acquisitions. J Magn Reson Imaging 11:9–19CrossRefPubMedGoogle Scholar
  7. 7.
    Lange T, Dydak U, Roberts TP et al (2006) Pitfalls in lactate measurements at 3T. AJNR Am J Neuroradiol 27:895–901PubMedGoogle Scholar
  8. 8.
    Duyn JH, Gillen J, Sobering G et al (1993) Multisection proton MR spectroscopic imaging of the brain. Radiology 188:277–282CrossRefPubMedGoogle Scholar
  9. 9.
    Ordidge RJ (1987) Random noise selective excitation pulses. Magn Reson Med 5:93–98CrossRefPubMedGoogle Scholar
  10. 10.
    Sijens PE, Oudkerk M, van Dijk P et al (1998) 1H MR spectroscopy monitoring of changes in choline peak area and line shape after Gd-contrast administration. Magn Reson Imaging 16:1273–1280CrossRefPubMedGoogle Scholar
  11. 11.
    Gunn AJ, Bennet L (2008) Timing of injury in the fetus and neonate. Curr Opin Obstet Gynecol 20:175–181CrossRefPubMedGoogle Scholar
  12. 12.
    Ittoop A, Zacharia TT (2012) Imaging of neonatal brain emergencies: multisequence MRI analysis of pathologic spectrum including diffusion and MR spectroscopy. Emerg Radiol 19:149–157CrossRefPubMedGoogle Scholar
  13. 13.
    Rutherford M, Counsell S, Allsop J et al (2004) Diffusion-weighted magnetic resonance imaging in term perinatal brain injury: a comparison with site of lesion and time from birth. Pediatrics 114:1004–1014CrossRefPubMedGoogle Scholar
  14. 14.
    Okereafor A, Allsop J, Counsell SJ et al (2008) Patterns of brain injury in neonates exposed to perinatal sentinel events. Pediatrics 121:906–914CrossRefPubMedGoogle Scholar
  15. 15.
    Rutherford M, Ramenghi LA, Edwards AD et al (2010) Assessment of brain tissue injury after moderate hypothermia in neonates with hypoxic-ischaemic encephalopathy: a nested substudy of a randomised controlled trial. Lancet Neurol 9:39–45CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Martinez-Biarge M, Diez-Sebastian J, Kapellou O et al (2011) Predicting motor outcome and death in term hypoxic-ischemic encephalopathy. Neurology 76:2055–2061CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ancora G, Testa C, Grandi S et al (2013) Prognostic value of brain proton MR spectroscopy and diffusion tensor imaging in newborns with hypoxic-ischemic encephalopathy treated by brain cooling. Neuroradiology 55:1017–1025CrossRefPubMedGoogle Scholar
  18. 18.
    Pu Y, Li QF, Zeng CM et al (2000) Increased detectability of alpha brain glutamate/glutamine in neonatal hypoxic-ischemic encephalopathy. AJNR Am J Neuroradiol 21:203–212PubMedGoogle Scholar
  19. 19.
    Leth H, Toft PB, Pryds O et al (1995) Brain lactate in preterm and growth-retarded neonates. Acta Paediatr 84:495–499CrossRefPubMedGoogle Scholar
  20. 20.
    Tomiyasu M, Aida N, Endo M et al (2013) Neonatal brain metabolite concentrations: an in vivo magnetic resonance spectroscopy study with a clinical MR system at 3 Tesla. PLoS One 8:e82746CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Graham SH, Meyerhoff DJ, Bayne L et al (1994) Magnetic resonance spectroscopy of N-acetylaspartate in hypoxic-ischemic encephalopathy. Ann Neurol 35:490–494CrossRefPubMedGoogle Scholar
  22. 22.
    Malik GK, Pandey M, Kumar R et al (2002) MR imaging and in vivo proton spectroscopy of the brain in neonates with hypoxic ischemic encephalopathy. Eur J Radiol 43:6–13CrossRefPubMedGoogle Scholar
  23. 23.
    Khong PL, Tse C, Wong IY et al (2004) Diffusion-weighted imaging and proton magnetic resonance spectroscopy in perinatal hypoxic-ischemic encephalopathy: association with neuromotor outcome at 18 months of age. J Child Neurol 19:872–881PubMedGoogle Scholar
  24. 24.
    Ashwal S, Holshouser B, Tong K et al (2004) Proton MR spectroscopy detected glutamate/glutamine is increased in children with traumatic brain injury. J Neurotrauma 21:1539–1552CrossRefPubMedGoogle Scholar
  25. 25.
    Miller SP, Newton N, Ferriero DM et al (2002) Predictors of 30-month outcome after perinatal depression: role of proton MRS and socioeconomic factors. Pediatr Res 52:71–77CrossRefPubMedGoogle Scholar
  26. 26.
    Degraeuwe P, Jaspers GJ, Robertson NJ et al (2013) Magnetic resonance spectroscopy as a prognostic marker in neonatal hypoxic-ischemic encephalopathy: a study protocol for an individual patient data meta-analysis. Syst Rev 2:96CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Panigrahy A, Bluml S (2007) Advances in magnetic resonance neuroimaging techniques in the evaluation of neonatal encephalopathy. Top Magn Reson Imaging 18:3–29CrossRefPubMedGoogle Scholar
  28. 28.
    Bednarek N, Mathur A, Inder T et al (2012) Impact of therapeutic hypothermia on MRI diffusion changes in neonatal encephalopathy. Neurology 78:1420–1427CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rollins N, Booth T, Morriss MC et al (2014) Predictive value of neonatal MRI showing no or minor degrees of brain injury after hypothermia. Pediatr Neurol 50:447–451CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chan KW, Chow AM, Chan KC et al (2010) Magnetic resonance spectroscopy of the brain under mild hypothermia indicates changes in neuroprotection-related metabolites. Neurosci Lett 475:150–155CrossRefPubMedGoogle Scholar
  31. 31.
    Thakur NH, Spencer AJ, Kilbride HW et al (2013) Findings and patterns on MRI and MR spectroscopy in neonates after therapeutic hypothermia for hypoxic ischemic encephalopathy treatment. South Med J 106:350–355CrossRefPubMedGoogle Scholar
  32. 32.
    Corbo ET, Bartnik-Olson BL, Machado S et al (2012) The effect of whole-body cooling on brain metabolism following perinatal hypoxic-ischemic injury. Pediatr Res 71:85–92CrossRefPubMedGoogle Scholar
  33. 33.
    Hanrahan JD, Sargentoni J, Azzopardi D et al (1996) Cerebral metabolism within 18 hours of birth asphyxia: a proton magnetic resonance spectroscopy study. Pediatr Res 39:584–590CrossRefPubMedGoogle Scholar
  34. 34.
    Barkovich AJ, Westmark KD, Bedi HS et al (2001) Proton spectroscopy and diffusion imaging on the first day of life after perinatal asphyxia: preliminary report. AJNR Am J Neuroradiol 22:1786–1794PubMedGoogle Scholar
  35. 35.
    Bitsch A, Bruhn H, Vougioukas V et al (1999) Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. AJNR Am J Neuroradiol 20:1619–1627PubMedGoogle Scholar
  36. 36.
    Bizzi A, Ulug AM, Crawford TO et al (2001) Quantitative proton MR spectroscopic imaging in acute disseminated encephalomyelitis. AJNR Am J Neuroradiol 22:1125–1130PubMedGoogle Scholar
  37. 37.
    Gabis LV, Panasci DJ, Andriola MR et al (2004) Acute disseminated encephalomyelitis: an MRI/MRS longitudinal study. Pediatr Neurol 30:324–329CrossRefPubMedGoogle Scholar
  38. 38.
    Ben Sira L, Miller E, Artzi M et al (2010) 1H-MRS for the diagnosis of acute disseminated encephalomyelitis: insight into the acute-disease stage. Pediatr Radiol 40:106–113CrossRefPubMedGoogle Scholar
  39. 39.
    Zimmerman RA, Wang ZJ (1997) The value of proton MR spectroscopy in pediatric metabolic brain disease. AJNR Am J Neuroradiol 18:1872–1879PubMedGoogle Scholar
  40. 40.
    Wang ZJ, Zimmerman RA (1998) Proton MR spectroscopy of pediatric brain metabolic disorders. Neuroimaging Clin N Am 8:781–807PubMedGoogle Scholar
  41. 41.
    Confort-Gouny S, Vion-Dury J, Chabrol B et al (1995) Localised proton magnetic resonance spectroscopy in X-linked adrenoleukodystrophy. Neuroradiology 37:568–575CrossRefPubMedGoogle Scholar
  42. 42.
    Boddaert N, Romano S, Funalot B et al (2008) 1H MRS spectroscopy evidence of cerebellar high lactate in mitochondrial respiratory chain deficiency. Mol Genet Metab 93:85–88CrossRefPubMedGoogle Scholar
  43. 43.
    Sijens PE, Smit GP, Rodiger LA et al (2008) MR spectroscopy of the brain in Leigh syndrome. Brain Dev 30:579–583CrossRefPubMedGoogle Scholar
  44. 44.
    Detre JA, Wang ZY, Bogdan AR et al (1991) Regional variation in brain lactate in Leigh syndrome by localized 1H magnetic resonance spectroscopy. Ann Neurol 29:218–221CrossRefPubMedGoogle Scholar
  45. 45.
    Rubio-Gozalbo ME, Heerschap A, Trijbels JM et al (1999) Proton MR spectroscopy in a child with pyruvate dehydrogenase complex deficiency. Magn Reson Imaging 17:939–944CrossRefPubMedGoogle Scholar
  46. 46.
    Wittsack HJ, Kugel H, Roth B et al (1996) Quantitative measurements with localized 1H MR spectroscopy in children with Canavan’s disease. J Magn Reson Imaging 6:889–893CrossRefPubMedGoogle Scholar
  47. 47.
    Schneider JF, Boltshauser E, Neuhaus TJ et al (2001) MRI and proton spectroscopy in Lowe syndrome. Neuropediatrics 32:45–48CrossRefPubMedGoogle Scholar
  48. 48.
    Martin E, Capone A, Schneider J et al (2001) Absence of N-acetylaspartate in the human brain: impact on neurospectroscopy? Ann Neurol 49:518–521CrossRefPubMedGoogle Scholar
  49. 49.
    Dezortova M, Jiru F, Petrasek J et al (2008) 1H MR spectroscopy as a diagnostic tool for cerebral creatine deficiency. MAGMA 21:327–332CrossRefPubMedGoogle Scholar
  50. 50.
    Bianchi MC, Tosetti M, Battini R et al (2007) Treatment monitoring of brain creatine deficiency syndromes: a 1H- and 31P-MR spectroscopy study. AJNR Am J Neuroradiol 28:548–554PubMedGoogle Scholar
  51. 51.
    Steinfeld R, Grapp M, Kraetzner R et al (2009) Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am J Hum Genet 85:354–363CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Dill P, Schneider J, Weber P et al (2011) Pyridoxal phosphate-responsive seizures in a patient with cerebral folate deficiency (CFD) and congenital deafness with labyrinthine aplasia, microtia and microdontia (LAMM). Mol Genet Metab 104:362–368CrossRefPubMedGoogle Scholar
  53. 53.
    Schwahn BC, Chen Z, Laryea MD et al (2003) Homocysteine-betaine interactions in a murine model of 5,10-methylenetetrahydrofolate reductase deficiency. FASEB J 17:512–514PubMedGoogle Scholar
  54. 54.
    Bizzi A, Bugiani M, Salomons GS et al (2002) X-linked creatine deficiency syndrome: a novel mutation in creatine transporter gene SLC6A8. Ann Neurol 52:227–231CrossRefPubMedGoogle Scholar
  55. 55.
    Jan W, Zimmerman RA, Wang ZJ et al (2003) MR diffusion imaging and MR spectroscopy of maple syrup urine disease during acute metabolic decompensation. Neuroradiology 45:393–399CrossRefPubMedGoogle Scholar
  56. 56.
    Felber SR, Sperl W, Chemelli A et al (1993) Maple syrup urine disease: metabolic decompensation monitored by proton magnetic resonance imaging and spectroscopy. Ann Neurol 33:396–401CrossRefPubMedGoogle Scholar
  57. 57.
    Chang KH, Tsou JC, Chen ST et al (2010) Temporal features of magnetic resonance imaging and spectroscopy in non-ketotic hyperglycemic chorea-ballism patients. Eur J Neurol 17:589–593CrossRefPubMedGoogle Scholar
  58. 58.
    Eichler F, Mahmood A, Loes D et al (2007) Magnetic resonance imaging detection of lesion progression in adult patients with X-linked adrenoleukodystrophy. Arch Neurol 64:659–664CrossRefPubMedGoogle Scholar
  59. 59.
    Eichler FS, Barker PB, Cox C et al (2002) Proton MR spectroscopic imaging predicts lesion progression on MRI in X-linked adrenoleukodystrophy. Neurology 58:901–907CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.University Children’s Hospital Basel (UKBB)BaselSwitzerland

Personalised recommendations