Skip to main content

Advertisement

Log in

Magnetic resonance evaluation of the knee in children and adolescents with achondroplasia

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Achondroplasia is the most common form of skeletal dysplasia. Although the radiographic features are well described, MRI features of the knee in achondroplasia have not been reported.

Objective

To describe common MRI characteristics of the knee joint in symptomatic children and adolescents with achondroplasia.

Materials and methods

We retrospectively evaluated 10 knee MRI examinations in 8 children and young adults (age range 11–20 years, mean 16.3 years) with achondroplasia. We measured modified Insall-Salvati index, knee flexion angle, anterior cruciate ligament (ACL)–Blumensaat line angle, ACL–tibial angle, posterior cruciate ligament (PCL) angle, intercondylar notch width index, and intercondylar notch depth index. We compared our findings with an age- and gender-matched control group of 20 children (age range 15–18 years; mean 16 years) with normal knee MRIs.

Results

All 10 knees in the achondroplasia group had discoid lateral meniscus; 8 meniscal tears were identified. Patella baja was present in half of the study cases. Greater knee flexion and increased ACL–Blumensaat line and PCL angles were seen in all achondroplasia knees. ACL–tibial angle was similar in the study and in the control group. Children with achondroplasia had deeper A-shape femoral notches that extended more anteriorly than those seen in the control group. MRI findings were confirmed in all seven knees with arthroscopic correlation.

Conclusion

Discoid lateral meniscus, often with tear, is a consistent feature in knee MRIs of symptomatic children and adolescents with achondroplasia. Other findings include patella baja, knee flexion, deep A-shape intercondylar notch, increased ACL–Blumensaat line angle and taut PCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Horton WA, Hall JG, Hecht JT (2007) Achondroplasia. Lancet 370:162–172

    Article  CAS  PubMed  Google Scholar 

  2. Trotter TL, Hall JG (2005) Health supervision for children with achondroplasia. Pediatrics 116:771–783

    Article  PubMed  Google Scholar 

  3. Chitayat D, Fernandez B, Gardner A et al (1999) Compound heterozygosity for the achondroplasia-hypochondroplasia FGFR3 mutations: prenatal diagnosis and postnatal outcome. Am J Med Genet 84:401–405

    Article  CAS  PubMed  Google Scholar 

  4. Spranger JW, Brill PW, Superti-Furga A et al (2002) Bone dysplasias. An atlas of genetic disorders of skeletal development. Oxford University Press, New York

    Google Scholar 

  5. Corell J (1991) Surgical correction of short stature in skeletal dysplasias. Acta Pediatr Scand Suppl 377:143–148

    Google Scholar 

  6. Ganel A, Horoszowski H, Kamhin M et al (1979) Leg lengthening in achondroplastic children. Clin Orthop Relat Res 144:194–197

    PubMed  Google Scholar 

  7. Nehme AM, Riseborough EJ, Tredwell SJ (1976) Skeletal growth and development of the achondroplastic dwarf. Clin Orthop Relat Res 116:8–23

    PubMed  Google Scholar 

  8. Inan M, Thacker M, Church C et al (2006) Dynamic lower extremity alignment in children with achondroplasia. J Pediatr Orthop 26:526–529

    Article  PubMed  Google Scholar 

  9. Bober M, Johnson C, Nicholson L et al (2008) Scott sign: a clinical measure of ligamentous laxity in achondroplastic infants. Am J Med Genet A 146A:2291–2292

    Article  PubMed  Google Scholar 

  10. Watanabe M, Takeda S, Ikeuchi H (1969) Atlas of arthroscopy. Igaku-Shoin, Tokyo

    Google Scholar 

  11. Lee BY, Jee WH, Kim JM et al (2000) Incidence and significance of demonstrating the meniscofemoral ligament on MRI. Br J Radiol 73:271–274

    Article  CAS  PubMed  Google Scholar 

  12. Shabshin N, Schweitzer ME, Morrison WB et al (2004) MRI criteria for patella alta and baja. Skelet Radiol 33:445–450

    Article  Google Scholar 

  13. Insall J, Salvati E (1971) Patella position in the normal knee joint. Radiology 101:101–104

    Article  CAS  PubMed  Google Scholar 

  14. Lee K, Siegel MJ, Lau DM et al (1999) Anterior cruciate ligament tears: MR imaging-based diagnosis in a pediatric population. Radiology 213:697–704

    Article  CAS  PubMed  Google Scholar 

  15. Gentili A, Seeger LL, Yao L et al (1994) Anterior cruciate ligament tear: indirect signs at MR imaging. Radiology 193:835–840

    Article  CAS  PubMed  Google Scholar 

  16. Kim HK, Laor T, Shire NJ et al (2008) Anterior and posterior cruciate ligaments at different patient ages: MR imaging findings. Radiology 247:826–835

    Article  PubMed  Google Scholar 

  17. Domzalski M, Grzelak P, Gabos P (2010) Risk factors for anterior cruciate ligament injury in skeletally immature patients: analysis of intercondylar notch width using magnetic resonance imaging. Int Orthop 34:703–707

    Article  PubMed Central  PubMed  Google Scholar 

  18. Al-Saeed O, Brown M, Athyal R et al (2013) Association of femoral intercondylar notch morphology, width index and the risk of anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 21:678–682

    Article  PubMed  Google Scholar 

  19. Hayashi LK, Yamaga H, Ida K et al (1988) Arthroscopic meniscectomy for discoid lateral meniscus in children. J Bone Joint Surg Am 70:1495–1500

    CAS  PubMed  Google Scholar 

  20. Davies AM, Cassar-Pullicino VN (2003) Imaging of the knee: techniques and applications. Springer, New York

    Book  Google Scholar 

  21. Sun Y, Jiang Q (2011) Review of discoid meniscus. Orthop Surg 3:219–223

    Article  PubMed  Google Scholar 

  22. Yaniv M, Blumberg N (2007) The discoid meniscus. J Child Orthop 1:89–96

    Article  PubMed Central  PubMed  Google Scholar 

  23. Sabharwal S, Wenokor C, Mehta A et al (2012) Intra-articular morphology of the knee joint in children with Blount disease: a case–control study using MRI. J Bone Joint Surg Am 94:883–890

    PubMed  Google Scholar 

  24. Ho-Fung V, Jaimes C, Delgado J et al (2013) MRI evaluation of the knee in children with infantile Blount disease: tibial and extra-tibial findings. Pediatr Radiol 43:1316–1326

    Article  PubMed  Google Scholar 

  25. Weale AE, Murray DW, Newman JH et al (1999) The length of the patellar tendon after unicompartmental and total knee replacement. J Bone Joint Surg (Br) 81:790–795

    Article  CAS  Google Scholar 

  26. Tria AJ Jr, Alicea JA, Cody RP (1994) Patella baja in anterior cruciate ligament reconstruction of the knee. Clin Orthop Relat Res 299:229–234

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren W. Averill.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akyol, Y., Averill, L.W., Atanda, A. et al. Magnetic resonance evaluation of the knee in children and adolescents with achondroplasia. Pediatr Radiol 45, 888–895 (2015). https://doi.org/10.1007/s00247-014-3228-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-014-3228-1

Keywords

Navigation