Pediatric Radiology

, Volume 46, Issue 7, pp 941–951 | Cite as

Key concepts in MR spectroscopy and practical approaches to gaining biochemical information in children

  • Loukas G. AstrakasEmail author
  • Maria I. Argyropoulou
Minisymposium: Pediatric MR Spectroscopy


Magnetic resonance spectroscopy (MRS) provides independent biochemical information and has become an invaluable adjunct to MRI and other imaging modalities. This review introduces key concepts and presents basic methodological steps regarding the acquisition and the interpretation of proton MRS. We review major brain metabolites and discuss MRS dependence on age, location, echo time and field strength.


Magnetic resonance spectroscopy Chemical shift J-coupling Metabolites Central nervous system Children 


Conflicts of interest



  1. 1.
    Boesch C (1999) Molecular aspects of magnetic resonance imaging and spectroscopy. Mol Aspects Med 20:185–318CrossRefPubMedGoogle Scholar
  2. 2.
    Kwock L, Smith JK, Castillo M et al (2006) Clinical role of proton magnetic resonance spectroscopy in oncology: brain, breast, and prostate cancer. Lancet Oncol 7:859–868CrossRefPubMedGoogle Scholar
  3. 3.
    Cecil KM, Jones BV (2001) Magnetic resonance spectroscopy of the pediatric brain. Top Magn Reson Imaging 12:435–452CrossRefPubMedGoogle Scholar
  4. 4.
    Dezortova M, Hajek M (2008) (1)H MR spectroscopy in pediatrics. Eur J Radiol 67:240–249CrossRefPubMedGoogle Scholar
  5. 5.
    Gillard JH, Waldman AD, Barker PB (2005) Clinical MR neuroimaging: diffusion, perfusion and spectroscopy. Cambridge University Press, CambridgeGoogle Scholar
  6. 6.
    Tzika AA (2008) Proton magnetic resonance spectroscopic imaging as a cancer biomarker for pediatric brain tumors (review). Int J Oncol 32:517–526CrossRefPubMedGoogle Scholar
  7. 7.
    Cecil KM (2006) MR spectroscopy of metabolic disorders. Neuroimaging Clin N Am 16:87–116CrossRefPubMedGoogle Scholar
  8. 8.
    Dong Z, Dreher W, Leibfritz D (2006) Toward quantitative short-echo-time in vivo proton MR spectroscopy without water suppression. Magn Reson Med 55:1441–1446CrossRefPubMedGoogle Scholar
  9. 9.
    Haase A, Frahm J, Hanicke W et al (1985) 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol 30:341–344CrossRefPubMedGoogle Scholar
  10. 10.
    Moonen C, van Zijl P (1990) Highly effective water suppression for in vivo proton NMR spectroscopy (DRYSTEAM). J Magn Reson 88:28–41Google Scholar
  11. 11.
    Gupta R (1976) Dynamic range problem in fourier transform NMR. Modified WEFT pulse sequence. J Magn Reson 24:461–465Google Scholar
  12. 12.
    Keevil SF (2006) Spatial localization in nuclear magnetic resonance spectroscopy. Phys Med Biol 51:R579–R636CrossRefPubMedGoogle Scholar
  13. 13.
    Brown TR, Kincaid BM, Ugurbil K (1982) NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci U S A 79:3523–3526CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Maudsley A, Hilal S, Perman W et al (1983) Spatially resolved high-resolution spectroscopy by ‘four-dimensional’ NMR. J Magn Reson 51:147–152Google Scholar
  15. 15.
    Skoch A, Jiru F, Bunke J (2008) Spectroscopic imaging: basic principles. Eur J Radiol 67:230–239CrossRefPubMedGoogle Scholar
  16. 16.
    Duijn J, Matson G, Maudsley A et al (1992) 3D phase encoding 1H spectroscopic imaging of human brain. Magn Reson Imaging 10:315–319CrossRefPubMedGoogle Scholar
  17. 17.
    Moonen C, Sobering G, van Zijl P et al (1992) Proton spectroscopic imaging of human brain. J Magn Reson 98:556–575Google Scholar
  18. 18.
    Posse S, Schuknecht B, Smith ME et al (1993) Short echo time proton MR spectroscopic imaging. J Comput Assist Tomogr 17:1–14CrossRefPubMedGoogle Scholar
  19. 19.
    Poullet J-B, Sima DM, Van Huffel S (2008) MRS signal quantitation: a review of time- and frequency-domain methods. J Magn Reson 195:134–144CrossRefPubMedGoogle Scholar
  20. 20.
    Jansen JF, Backes WH, Nicolay K et al (2006) 1H MR spectroscopy of the brain: absolute quantification of metabolites. Radiology 240:318–332CrossRefPubMedGoogle Scholar
  21. 21.
    Alger JR (2010) Quantitative proton magnetic resonance spectroscopy and spectroscopic imaging of the brain: a didactic review. Top Magn Reson Imaging 21:115–128CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Joliot M, Mazoyer BM, Huesman RH (1991) In vivo NMR spectral parameter estimation: a comparison between time and frequency domain methods. Magn Reson Med 18:358–370CrossRefPubMedGoogle Scholar
  23. 23.
    Henriksen O (1995) In vivo quantitation of metabolite concentrations in the brain by means of proton MRS. NMR Biomed 8:139–148CrossRefPubMedGoogle Scholar
  24. 24.
    Naressi A, Couturier C, Castang I et al (2001) Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med 31:269–286CrossRefPubMedGoogle Scholar
  25. 25.
    Steffen-Smith EA, Venzon DJ, Bent RS et al (2012) Single- and multivoxel proton spectroscopy in pediatric patients with diffuse intrinsic pontine glioma. Int J Radiat Oncol Biol Phys 84:774–779CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kadri M, Shu S, Holshouser B et al (2003) Proton magnetic resonance spectroscopy improves outcome prediction in perinatal CNS insults. J Perinatol 23:181–185CrossRefPubMedGoogle Scholar
  27. 27.
    Martin WR (2007) MR spectroscopy in neurodegenerative disease. Mol Imaging Biol 9:196–203CrossRefPubMedGoogle Scholar
  28. 28.
    Astrakas LG, Zurakowski D, Tzika AA et al (2004) Noninvasive magnetic resonance spectroscopic imaging biomarkers to predict the clinical grade of pediatric brain tumors. Clin Cancer Res 10:8220–8228CrossRefPubMedGoogle Scholar
  29. 29.
    Baslow MH, Suckow RF, Gaynor K et al (2003) Brain damage results in down-regulation of N-acetylaspartate as a neuronal osmolyte. NeuroMolecular Med 3:95–104CrossRefPubMedGoogle Scholar
  30. 30.
    Glunde K, Bhujwalla ZM, Ronen SM (2011) Choline metabolism in malignant transformation. Nat Rev Cancer 11:835–848PubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang ZJ, Zimmerman RA (1998) Proton MR spectroscopy of pediatric brain metabolic disorders. Neuroimaging Clin N Am 8:781–807PubMedGoogle Scholar
  32. 32.
    Zarifi MK, Astrakas LG, Poussaint TY et al (2002) Prediction of adverse outcome with cerebral lactate level and apparent diffusion coefficient in infants with perinatal asphyxia. Radiology 225:859–870CrossRefPubMedGoogle Scholar
  33. 33.
    Lin DD, Crawford TO, Barker PB (2003) Proton MR spectroscopy in the diagnostic evaluation of suspected mitochondrial disease. AJNR Am J Neuroradiol 24:33–41PubMedGoogle Scholar
  34. 34.
    Gillard JH, Barker PB, van Zijl PC et al (1996) Proton MR spectroscopy in acute middle cerebral artery stroke. AJNR Am J Neuroradiol 17:873–886PubMedGoogle Scholar
  35. 35.
    Bulik M, Jancalek R, Vanicek J et al (2013) Potential of MR spectroscopy for assessment of glioma grading. Clin Neurol Neurosurg 115:146–153CrossRefPubMedGoogle Scholar
  36. 36.
    Lai PH, Ho JT, Chen WL et al (2002) Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusion-weighted imaging. AJNR Am J Neuroradiol 23:1369–1377PubMedGoogle Scholar
  37. 37.
    Wang ZJ, Vigneron DB, Miller SP et al (2008) Brain metabolite levels assessed by lactate-edited MR spectroscopy in premature neonates with and without pentobarbital sedation. AJNR Am J Neuroradiol 29:798–801CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ashwal S, Holshouser B, Tong K et al (2004) Proton spectroscopy detected myoinositol in children with traumatic brain injury. Pediatr Res 56:630–638CrossRefPubMedGoogle Scholar
  39. 39.
    Shonk TK, Moats RA, Gifford P et al (1995) Probable Alzheimer disease: diagnosis with proton MR spectroscopy. Radiology 195:65–72CrossRefPubMedGoogle Scholar
  40. 40.
    Adibhatla RM, Hatcher JF, Dempsey RJ (2006) Lipids and lipidomics in brain injury and diseases. AAPS J 8:E314–E321CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wootton-Gorges SL, Buonocore MH, Kuppermann N et al (2005) Detection of cerebral {beta}-hydroxy butyrate, acetoacetate, and lactate on proton MR spectroscopy in children with diabetic ketoacidosis. AJNR Am J Neuroradiol 26:1286–1291PubMedGoogle Scholar
  42. 42.
    Leuzzi V, Bianchi MC, Tosetti M et al (2000) Clinical significance of brain phenylalanine concentration assessed by in vivo proton magnetic resonance spectroscopy in phenylketonuria. J Inherit Metab Dis 23:563–570CrossRefPubMedGoogle Scholar
  43. 43.
    Burtscher IM, Holtas S (1999) In vivo proton MR spectroscopy of untreated and treated brain abscesses. AJNR Am J Neuroradiol 20:1049–1053PubMedGoogle Scholar
  44. 44.
    Panigrahy A, Krieger MD, Gonzalez-Gomez I et al (2006) Quantitative short echo time 1H-MR spectroscopy of untreated pediatric brain tumors: preoperative diagnosis and characterization. AJNR Am J Neuroradiol 27:560–572PubMedGoogle Scholar
  45. 45.
    Kreis R, Hofmann L, Kuhlmann B et al (2002) Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 48:949–958CrossRefPubMedGoogle Scholar
  46. 46.
    Kreis R, Ernst T, Ross BD (1993) Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson Med 30:424–437CrossRefPubMedGoogle Scholar
  47. 47.
    Toft PB, Leth H, Lou HC et al (1994) Metabolite concentrations in the developing brain estimated with proton MR spectroscopy. J Magn Reson Imaging 4:674–680CrossRefPubMedGoogle Scholar
  48. 48.
    Kok RD, van den Berg PP, van den Bergh AJ et al (2002) Maturation of the human fetal brain as observed by 1H MR spectroscopy. Magn Reson Med 48:611–616CrossRefPubMedGoogle Scholar
  49. 49.
    Horska A, Kaufmann WE, Brant LJ et al (2002) In vivo quantitative proton MRSI study of brain development from childhood to adolescence. J Magn Reson Imaging 15:137–143CrossRefPubMedGoogle Scholar
  50. 50.
    Pouwels PJ, Frahm J (1998) Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS. Magn Reson Med 39:53–60CrossRefPubMedGoogle Scholar
  51. 51.
    Pouwels PJ, Brockmann K, Kruse B et al (1999) Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res 46:474–485CrossRefPubMedGoogle Scholar
  52. 52.
    Ashwal S, Tong KA, Ghosh N et al. (2014) Application of advanced neuroimaging modalities in pediatric traumatic brain injury. J Child Neurol [Epub ahead of print]Google Scholar
  53. 53.
    Granacher RP (2008) Traumatic brain injury: methods for clinical and forensic neuropsychiatric assessment. CRC Press/Taylor & Francis Group, Boca RatonGoogle Scholar
  54. 54.
    Ross B, Bluml S (2001) Magnetic resonance spectroscopy of the human brain. Anat Rec 265:54–84CrossRefPubMedGoogle Scholar
  55. 55.
    Ankarcrona M, Dypbukt JM, Bonfoco E et al (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15:961–973CrossRefPubMedGoogle Scholar
  56. 56.
    Huang BY, Castillo M (2008) Hypoxic-ischemic brain injury: imaging findings from birth to adulthood. Radiographics 28:417–439, quiz 617CrossRefPubMedGoogle Scholar
  57. 57.
    Johnston MV (1995) Neurotransmitters and vulnerability of the developing brain. Brain Dev 17:301–306CrossRefPubMedGoogle Scholar
  58. 58.
    Liu HS, Chung HW, Juan CJ et al (2008) Anomalous J-modulation effects on amino acids in clinical 3T MR spectroscopy. AJNR Am J Neuroradiol 29:1644–1648CrossRefPubMedGoogle Scholar
  59. 59.
    Kim JH, Chang KH, Na DG et al (2006) Comparison of 1.5T and 3T 1H MR spectroscopy for human brain tumors. Korean J Radiol 7:156–161CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Inglese M, Spindler M, Babb JS et al (2006) Field, coil, and echo-time influence on sensitivity and reproducibility of brain proton MR spectroscopy. AJNR Am J Neuroradiol 27:684–688PubMedGoogle Scholar
  61. 61.
    Thomas MA, Hattori N, Umeda M et al (2003) Evaluation of two-dimensional L-COSY and JPRESS using a 3T MRI scanner: from phantoms to human brain in vivo. NMR Biomed 16:245–251CrossRefPubMedGoogle Scholar
  62. 62.
    Nagarajan R, Sarma MK, Thames AD et al (2012) 2D MR spectroscopy combined with prior-knowledge fitting is sensitive to HCV-associated cerebral metabolic abnormalities. Int J Hepatol 2012:179365CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Cudalbu C, Comment A, Kurdzesau F et al (2010) Feasibility of in vivo 15N MRS detection of hyperpolarized 15N labeled choline in rats. Phys Chem Chem Phys 12:5818–5823CrossRefPubMedGoogle Scholar
  64. 64.
    Ross BD, Bhattacharya P, Wagner S et al (2010) Hyperpolarized MR imaging: neurologic applications of hyperpolarized metabolism. AJNR Am J Neuroradiol 31:24–33CrossRefPubMedGoogle Scholar
  65. 65.
    Rowland IJ, Peterson ET, Gordon JW et al (2010) Hyperpolarized 13carbon MR. Curr Pharm Biotechnol 11:709–719CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Medical Physics, Medical SchoolUniversity of IoanninaIoanninaGreece
  2. 2.Radiology, Medical SchoolUniversity of IoanninaIoanninaGreece

Personalised recommendations