Pediatric Radiology

, Volume 45, Issue 1, pp 20–26 | Cite as

Cardiac magnetic resonance imaging in children

  • Willem A. HelbingEmail author
  • Mohamed Ouhlous


MRI is an important additional tool in the diagnostic work-up of children with congenital heart disease. This review aims to summarise the role MRI has in this patient population. Echocardiography remains the main diagnostic tool in congenital heart disease. In specific situations, MRI is used for anatomical imaging of congenital heart disease. This includes detailed assessment of intracardiac anatomy with 2-D and 3-D sequences. MRI is particularly useful for assessment of retrosternal structures in the heart and for imaging large vessel anatomy. Functional assessment includes assessment of ventricular function using 2-D cine techniques. Of particular interest in congenital heart disease is assessment of right and single ventricular function. Two-dimensional and newer 3-D techniques to quantify flow in these patients are or will soon become an integral part of quantification of shunt size, valve function and complex flow patterns in large vessels. More advanced uses of MRI include imaging of cardiovascular function during stress and tissue characterisation of the myocardium. Techniques used for this purpose need further validation before they can become part of the daily routine of MRI assessment of congenital heart disease.


Congenital heart disease Magnetic resonance imaging Phase-contrast magnetic resonance imaging Ventricular function Child 


Conflicts of interest



  1. 1.
    van der Linde D, Konings EE, Slager MA et al (2011) Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 58:2241–2247PubMedCrossRefGoogle Scholar
  2. 2.
    Stuart AG (2012) Changing lesion demographics of the adult with congenital heart disease: an emerging population with complex needs. Futur Cardiol 8:305–313CrossRefGoogle Scholar
  3. 3.
    Marelli AJ, Mackie AS, Ionescu-Ittu R et al (2007) Congenital heart disease in the general population: changing prevalence and age distribution. Circulation 115:163–172PubMedCrossRefGoogle Scholar
  4. 4.
    Beels L, Bacher K, De Wolf D et al (2009) Gamma-H2AX foci as a biomarker for patient X-ray exposure in pediatric cardiac catheterization: are we underestimating radiation risks? Circulation 120:1903–1909PubMedCrossRefGoogle Scholar
  5. 5.
    Fratz S, Chung T, Greil GF et al (2013) Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson 15:51PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Valsangiacomo Buechel ER, Grosse-Wortmann L, Fratz S et al. (2014) Indications for cardiovascular magnetic resonance in children with congenital and acquired heart disease - An expert consensus paper of the Imaging Working Group of the AEPC and the Cardiovascular Magnetic Resonance Section of the EACVI. Eur Heart J Cardiovasc Imaging AND Cardiology in the Young in press.Google Scholar
  7. 7.
    Anderson RH, Becker AE, Freedom RM et al (1984) Sequential segmental analysis of congenital heart disease. Pediatr Cardiol 5:281–287PubMedCrossRefGoogle Scholar
  8. 8.
    Razavi RS, Hill DL, Muthurangu V et al (2003) Three-dimensional magnetic resonance imaging of congenital cardiac anomalies. Cardiol Young 13:461–465PubMedCrossRefGoogle Scholar
  9. 9.
    Sorensen TS, Korperich H, Greil GF et al (2004) Operator-independent isotropic three-dimensional magnetic resonance imaging for morphology in congenital heart disease: a validation study. Circulation 110:163–169PubMedCrossRefGoogle Scholar
  10. 10.
    Feder E, Meisner H, Bühlmeyer K et al (1980) Operative treatment of TGA: comparison of senning’s and mustard’s operation in patients under 2 years. Thorac Cardiovasc Surg 28:7–12Google Scholar
  11. 11.
    Khairy P, Poirier N, Mercier L-A (2007) Univentricular heart. Circulation 115:800–812PubMedCrossRefGoogle Scholar
  12. 12.
    Grosse-Wortmann L, Al-Otay A, Woo Goo H et al (2007) Anatomical and functional evaluation of pulmonary veins in children by magnetic resonance imaging. J Am Coll Cardio 49:993–1002CrossRefGoogle Scholar
  13. 13.
    Kellenberger C (2010) Aortic arch malformations. Pediatr Radiol 40:876–884PubMedCrossRefGoogle Scholar
  14. 14.
    Knobel Z, Kellenberger C, Kaiser T et al (2011) Geometry and dimensions of the pulmonary artery bifurcation in children and adolescents: assessment in vivo by contrast-enhanced MR-angiography. Int J Cardiovasc Imaging 27:385–396PubMedCrossRefGoogle Scholar
  15. 15.
    Konen E, Merchant N, Provost Y et al (2004) Coarctation of the aorta before and after correction: the role of cardiovascular MRI. AJR Am J Roentgenol 182:1333–1339PubMedCrossRefGoogle Scholar
  16. 16.
    Norozi K, Wessel A, Alpers V et al (2006) Incidence and risk distribution of heart failure in adolescents and adults with congenital heart disease after cardiac surgery. Am J Cardiol 97:1238–1243PubMedCrossRefGoogle Scholar
  17. 17.
    Helbing WA, Bosch HG, Maliepaard C et al (1995) Comparison of echocardiographic methods with magnetic resonance imaging for assessment of right ventricular function in children. Am J Cardiol 76:589–594PubMedCrossRefGoogle Scholar
  18. 18.
    Sheehan FH, Ge S, Vick GW 3rd et al (2008) Three-dimensional shape analysis of right ventricular remodeling in repaired tetralogy of Fallot. Am J Cardiol 101:107–113PubMedCrossRefGoogle Scholar
  19. 19.
    Rebergen SA, van der Wall EE, Helbing WA et al (1996) Quantification of pulmonary and systemic blood flow by magnetic resonance velocity mapping in the assessment of atrial-level shunts. Int J Card Imaging 12:143–152PubMedCrossRefGoogle Scholar
  20. 20.
    Rebergen SA, Helbing WA, van der Wall EE et al (1995) MR velocity mapping of tricuspid flow in healthy children and in patients who have undergone Mustard or Senning repair. Radiology 194:505–512PubMedCrossRefGoogle Scholar
  21. 21.
    Rebergen SA, van der Wall EE, Doornbos J et al (1993) Magnetic resonance measurement of velocity and flow: technique, validation, and cardiovascular applications. Am Heart J 126:1439–1456PubMedCrossRefGoogle Scholar
  22. 22.
    Rebergen SA, Chin JG, Ottenkamp J et al (1993) Pulmonary regurgitation in the late postoperative follow-up of tetralogy of Fallot. Volumetric quantitation by nuclear magnetic resonance velocity mapping. Circulation 88:2257–2266PubMedCrossRefGoogle Scholar
  23. 23.
    Rebergen SA, Ottenkamp J, Doornbos J et al (1993) Postoperative pulmonary flow dynamics after Fontan surgery: assessment with nuclear magnetic resonance velocity mapping. J Am Coll Cardiol 21:123–131PubMedCrossRefGoogle Scholar
  24. 24.
    Alfakih K, Plein S, Thiele H et al (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17:323–329PubMedCrossRefGoogle Scholar
  25. 25.
    Buechel EV, Kaiser T, Jackson C et al (2009) Normal right- and left ventricular volumes and myocardial mass in children measured by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 11:19PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Robbers-Visser D, Boersma E, Helbing WA (2009) Normal biventricular function, volumes, and mass in children aged 8 to 17 years. J Magn Reson Imaging 29:552–559Google Scholar
  27. 27.
    Sarikouch S, Peters B, Gutberlet M et al (2010) Sex-specific pediatric percentiles for ventricular size and mass as reference values for cardiac MRI: assessment by steady-state free-precession and phase-contrast MRI flow. Circ Cardiovasc Imaging 3:65–76PubMedCrossRefGoogle Scholar
  28. 28.
    Luijnenburg S, Robbers-Visser D, Moelker A et al (2010) Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging. Int J Cardiovasc Imaging 26:57–64PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Fratz S, Schuhbaeck A, Buchner C et al (2009) Comparison of accuracy of axial slices versus short-axis slices for measuring ventricular volumes by cardiac magnetic resonance in patients with corrected tetralogy of Fallot. Am J Cardiol 103:1764–1769PubMedCrossRefGoogle Scholar
  30. 30.
    Strugnell WE, Slaughter IR, Riley RA et al (2005) Modified RV short axis series–a new method for cardiac MRI measurement of right ventricular volumes. J Cardiovasc Magn Reson 7:769–774PubMedCrossRefGoogle Scholar
  31. 31.
    Beerbaum P, Körperich H, Barth P et al (2001) Noninvasive quantification of left-to-right shunt in pediatric patients: phase-contrast cine magnetic resonance imaging compared with invasive oximetry. Circulation 103:2476–2482PubMedCrossRefGoogle Scholar
  32. 32.
    Grosse-Wortmann L, Al-Otay A, Yoo S-J (2009) Aortopulmonary collaterals after bidirectional cavopulmonary connection or Fontan completion: quantification with MRI. Circ Cardiovasc Imaging 2:219–225PubMedCrossRefGoogle Scholar
  33. 33.
    Kilner PJ, Gatehouse PD, Firmin DN (2007) Flow measurement by magnetic resonance: a unique asset worth optimising. J Cardiovasc Magn Reson 9:723–728PubMedCrossRefGoogle Scholar
  34. 34.
    Kozerke S, Hasenkam JM, Nygaard H et al (2001) Heart motion-adapted MR velocity mapping of blood velocity distribution downstream of aortic valve prostheses: initial experience. Radiology 218:548–555PubMedCrossRefGoogle Scholar
  35. 35.
    Vogt F, Theysohn J, Michna D et al (2013) Contrast-enhanced time-resolved 4D MRA of congenital heart and vessel anomalies: image quality and diagnostic value compared with 3D MRA. Eur Radiol 23:2392–2404PubMedCrossRefGoogle Scholar
  36. 36.
    Valverde I, Nordmeyer S, Uribe S et al (2012) Systemic-to-pulmonary collateral flow in patients with palliated univentricular heart physiology: measurement using cardiovascular magnetic resonance 4D velocity acquisition. J Cardiovasc Magn Reson 14:25PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Luijnenburg SE, Peters RE, van der Geest RJ et al (2013) Abnormal right atrial and right ventricular diastolic function relate to impaired clinical condition in patients operated for tetralogy of Fallot. Int J Cardiol 167:833–839PubMedCrossRefGoogle Scholar
  38. 38.
    Kempny A, Fernandez-Jimenez R, Orwat S et al (2012) Quantification of biventricular myocardial function using cardiac magnetic resonance feature tracking, endocardial border delineation and echocardiographic speckle tracking in patients with repaired tetralogy of fallot and healthy controls. J Cardiovasc Magn Reson 14:32PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Robbers-Visser D, Luijnenburg SE, van den Berg J et al (2009) Stress imaging in congenital cardiac disease. Cardiol Young 19:552–562PubMedCrossRefGoogle Scholar
  40. 40.
    Luijnenburg SE, Mekic S, van den Berg J et al (2013) Ventricular response to dobutamine stress relates to the change in peak oxygen uptake during the 5-year follow-up in young patients with repaired tetralogy of Fallot. Eur Heart J Cardiovasc Imaging 15:189–194PubMedCrossRefGoogle Scholar
  41. 41.
    Winter MM, Scherptong RWC, Kumar S et al (2010) Ventricular response to stress predicts outcome in adult patients with a systemic right ventricle. Am Heart J 160:870–876PubMedCrossRefGoogle Scholar
  42. 42.
    Jellis C, Martin J, Narula J et al (2010) Assessment of nonischemic myocardial fibrosis. J Am Coll Cardiol 56:89–97PubMedCrossRefGoogle Scholar
  43. 43.
    Messroghli DR, Radjenovic A, Kozerke S et al (2004) Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 52:141–146PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of RadiologyErasmus Medical Centre — Sophia Children’s HospitalRotterdamThe Netherlands
  2. 2.Department of Paediatrics (Division of Cardiology)RotterdamThe Netherlands

Personalised recommendations