Skip to main content
Log in

Shear wave elastography helps differentiate biliary atresia from other neonatal/infantile liver diseases

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Biliary atresia is a rapidly progressive liver disease necessitating prompt diagnosis and surgical intervention, so it must be promptly distinguished from other neonatal/infantile liver diseases.

Objective

To determine whether US shear wave elastography (SWE) can differentiate biliary atresia from other neonatal/infantile liver diseases based on liver hardness.

Materials and methods

Eleven children younger than 1 year who had suspected liver disease underwent anatomically and temporally-related hepatic shear wave elastography and clinically indicated percutaneous core needle biopsy. Shear wave elastography was performed immediately prior to liver biopsy at the targeted biopsy site using an Acuson S3000 US system/9L4 transducer (Siemens Medical Solutions USA, Malvern, PA). Shear wave elastography was performed using Virtual Touch Quantification (VTQ) and Virtual Touch IQ (VTIQ) modes, and six shear wave speed measurements were acquired from each subject for each mode. Children were placed in two groups based on histology, biliary atresia (n = 6) vs. non-biliary atresia (other neonatal/infantile liver diseases) (n = 5), and mean shear wave speed measurements were compared using the unpaired student’s t-test (two-tailed). A P-value <0.05 was considered significant.

Results

Using the VTQ mode, mean liver shear wave speed was 2.08 ± 0.17 m/s for the biliary atresia group and 1.28 ± 0.13 m/s for the non-biliary atresia group (P < 0.0001). Using the VTIQ mode, mean liver shear wave speed was 3.14 ± 0.73 m/s for the biliary atresia group and 1.61 ± 0.23 m/s for the non-biliary atresia group (P = 0.003). Ishak liver fibrosis scores ranged from 3 to 6 for the biliary atresia group and from 0 to 1 for the non-biliary atresia group.

Conclusion

Liver shear wave speed is abnormally increased in neonates and infants with biliary atresia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Talachian E, Bidari A, Mehrazma M et al (2014) Biopsy-driven diagnosis in infants with cholestatic jaundice in Iran. World J Gastroenterol 20:1048–1053

    Article  PubMed Central  PubMed  Google Scholar 

  2. Hung PY, Chen CC, Chen WJ et al (2006) Long-term prognosis of patients with biliary atresia: a 25 year summary. J Pediatr Gastroenterol Nutr 42:190–195

    Article  PubMed  Google Scholar 

  3. Moyer V, Freese DK, Whitington PF et al (2004) Guideline for the evaluation of cholestatic jaundice in infants: recommendations of the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr 39:115–128

    Article  PubMed  Google Scholar 

  4. Nio M, Ohi R, Miyano T et al (2003) Five- and 10-year survival rates after surgery for biliary atresia: a report from the Japanese Biliary Atresia Registry. J Pediatr Surg 38:997–1000

    Article  PubMed  Google Scholar 

  5. Ohi R, Nio M, Chiba T et al (1990) Long-term follow-up after surgery for patients with biliary atresia. J Pediatr Surg 25:442–445

    Article  CAS  PubMed  Google Scholar 

  6. Haafiz AB (2010) Liver fibrosis in biliary atresia. Expert Rev Gastroenterol Hepatol 4:335–343

    Article  PubMed  Google Scholar 

  7. Hahn SM, Kim S, Park KI et al (2013) Clinical benefit of liver stiffness measurement at 3 months after Kasai hepatoportoenterostomy to predict the liver related events in biliary atresia. PLoS One 8:e80652

    Article  PubMed Central  PubMed  Google Scholar 

  8. Noruegas MJ, Matos H, Goncalves I et al (2012) Acoustic radiation force impulse-imaging in the assessment of liver fibrosis in children. Pediatr Radiol 42:201–204

    Article  PubMed  Google Scholar 

  9. Eiler J, Kleinholdermann U, Albers D et al (2012) Standard value of ultrasound elastography using acoustic radiation force impulse imaging (ARFI) in healthy liver tissue of children and adolescents. Ultraschall Med 33:474–479

    Article  CAS  PubMed  Google Scholar 

  10. Nightingale K (2011) Acoustic radiation force impulse (ARFI) imaging: a review. Curr Med Imaging Rev 7:328–339

    Article  PubMed Central  PubMed  Google Scholar 

  11. Friedrich-Rust M, Wunder K, Kriener S et al (2009) Liver fibrosis in viral hepatitis: noninvasive assessment with acoustic radiation force impulse imaging versus transient elastography. Radiology 252:595–604

    Article  PubMed  Google Scholar 

  12. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  13. Ishak K, Baptista A, Bianchi L et al (1995) Histological grading and staging of chronic hepatitis. J Hepatol 22:696–699

    Article  CAS  PubMed  Google Scholar 

  14. Tan Kendrick AP, Phua KB, Ooi BC et al (2003) Biliary atresia: making the diagnosis by the gallbladder ghost triad. Pediatr Radiol 33:311–315

    Article  PubMed  Google Scholar 

  15. Liu B, Cai J, Xu Y et al (2014) Three-dimensional magnetic resonance cholangiopancreatography for the diagnosis of biliary atresia in infants and neonates. PLoS One 9:e88268

    Article  PubMed Central  PubMed  Google Scholar 

  16. Kwatra N, Shalaby-Rana E, Narayanan S et al (2013) Phenobarbital-enhanced hepatobiliary scintigraphy in the diagnosis of biliary atresia: two decades of experience at a tertiary center. Pediatr Radiol 43:1365–1375

    Article  PubMed  Google Scholar 

  17. Kianifar HR, Tehranian S, Shojaei P et al (2013) Accuracy of hepatobiliary scintigraphy for differentiation of neonatal hepatitis from biliary atresia: systematic review and meta-analysis of the literature. Pediatr Radiol 43:905–919

    Article  PubMed  Google Scholar 

  18. Rastogi A, Krishnani N, Yachha SK et al (2009) Histopathological features and accuracy for diagnosing biliary atresia by prelaparotomy liver biopsy in developing countries. J Gastroenterol Hepatol 24:97–102

    Article  PubMed  Google Scholar 

  19. Yang JG, Ma DQ, Peng Y et al (2009) Comparison of different diagnostic methods for differentiating biliary atresia from idiopathic neonatal hepatitis. Clin Imaging 33:439–446

    Article  PubMed  Google Scholar 

  20. Russo P, Magee JC, Boitnott J et al (2011) Design and validation of the biliary atresia research consortium histologic assessment system for cholestasis in infancy. Clin Gastroenterol Hepatol 9:357–362

    Article  PubMed Central  PubMed  Google Scholar 

  21. Azar G, Beneck D, Lane B et al (2002) Atypical morphologic presentation of biliary atresia and value of serial liver biopsies. J Pediatr Gastroenterol Nutr 34:212–215

    Article  PubMed  Google Scholar 

  22. Gebo KA, Herlong HF, Torbenson MS et al (2002) Role of liver biopsy in management of chronic hepatitis C: a systematic review. Hepatology 36:S161–172

    Article  PubMed  Google Scholar 

  23. Emerick KM, Rand EB, Goldmuntz E et al (1999) Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology 29:822–829

    Article  CAS  PubMed  Google Scholar 

  24. Castera L (2009) Transient elastography and other noninvasive tests to assess hepatic fibrosis in patients with viral hepatitis. J Viral Hepat 16:300–314

    Article  PubMed  Google Scholar 

  25. Rizzo L, Calvaruso V, Cacopardo B et al (2011) Comparison of transient elastography and acoustic radiation force impulse for non-invasive staging of liver fibrosis in patients with chronic hepatitis C. Am J Gastroenterol 106:2112–2120

    Article  CAS  PubMed  Google Scholar 

  26. Pinto J, Matos H, Nobre S et al (2014) Comparison of acoustic radiation force impulse/serum noninvasive markers for fibrosis prediction in liver transplant. J Pediatr Gastroenterol Nutr 58:382–386

    Article  CAS  PubMed  Google Scholar 

  27. Shima H, Igarashi G, Wakisaka M et al (2012) Noninvasive acoustic radiation force impulse (ARFI) elastography for assessing the severity of fibrosis in the post-operative patients with biliary atresia. Pediatr Surg Int 28:869–872

    Article  PubMed  Google Scholar 

  28. Hanquinet S, Courvoisier D, Kanavaki A et al (2013) Acoustic radiation force impulse imaging-normal values of liver stiffness in healthy children. Pediatr Radiol 43:539–544

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

An ultrasound imaging system used in this study was provided to Dr. Dillman by Siemens Medical Solutions USA for a separate investigator-initiated investigation. This investigation was supported in part by grant number 2UL1TR000433 of the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. Dillman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leschied, J.R., Dillman, J.R., Bilhartz, J. et al. Shear wave elastography helps differentiate biliary atresia from other neonatal/infantile liver diseases. Pediatr Radiol 45, 366–375 (2015). https://doi.org/10.1007/s00247-014-3149-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-014-3149-z

Keywords

Navigation