Skip to main content
Log in

Three-dimensional quantitative analysis of the proximal femur and the pelvis in children and adolescents using an upright biplanar slot-scanning X-ray system

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

The anatomy and biomechanics of the pelvis and lower limbs play a key role in the development of orthopaedic disorders.

Objective

This study aimed to establish normal reference standards for the measurement of gender-specific pelvic and femoral parameters in children and adolescents with the EOS 2-D/3-D system.

Materials and methods

EOS 2-D images of 508 individuals (ages 4-16 years) were obtained as part of routine diagnostics. Patients with lower limb abnormalities were excluded. Pelvic and femoral surface 3-D models were generated and clinical parameters calculated by sterEOS 3-D reconstruction software. Data were evaluated using Spearman correlation, paired-samples and independent-samples t-test and linear regression analysis.

Results

Changes in anatomical parameters were found to correlate with age and gender in 1) femoral mechanical axis length: 27.3-43.7 cm (males), 25.5-41.2 cm (females), 2) femoral head diameter: 29.4-46.1 mm (males), 27.7-41.3 mm (females), 3) femoral offset: 26.8-42.4 mm (males), 25.5-37.9 mm (females) and 4) femoral neck length: 35.1-52.9 mm (males), 32.8-48.1 mm (females). There was no gender-specific correlation for the neck shaft angle with values from 130.4° to 129.3°, for femoral torsion (22.5°-19.4°), for sacral slope (39.0°-44.4°) and for lateral pelvic tilt (5.1 mm-6.2 mm). Sagittal pelvic tilt exhibited no significant correlation with age showing average values of 6.5°.

Conclusions

The EOS 2-D/3-D system proved to be a valuable method in the evaluation of female and male developmental changes in pelvic and lower limb anatomical parameters, in normal individuals younger than 16 years of age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Birkenmaier C, Jorysz G, Jansson V et al (2010) Normal development of the hip: a geometrical analysis based on planimetric radiography. J Pediatr Orthop B 19:1–8

    Article  PubMed  Google Scholar 

  2. Borghese NA, Bianchi L, Lacquaniti F (1996) Kinematic determinants of human locomotion. J Physiol 494:863–879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Byrne DP, Mulhall KJ, Baker JF (2010) Anatomy & biomechanics of the hip. Open Sports Med J 4:51–57

    Article  Google Scholar 

  4. Campbell JD, Higgs R, Wright K et al (2001) Pelvis, hip and thigh injuries. In: Schenck RC, Guskiewicz KM, Holmes CF (eds) Athletic training and sports medicine. American Academy of Orthopaedic Surgeons, Rosemount, p 399

    Google Scholar 

  5. Johnston JD, Noble PC, Hurwitz DE et al (1998) Biomechanics of the hip. In: Callaghan J, Rosenberg AG, Rubas HE (eds) The adult hip, 1st edn. LWW, Philadelphia, pp 81–90

    Google Scholar 

  6. Charpak G (1996) Prospects for the use in medicine of new detectors of ionizing radiation. Bull Acad Natl Med 180:161–168, discussion 168–169

    CAS  PubMed  Google Scholar 

  7. Charpak G, Bouclier R, Bressani T et al (1968) The use of multiwire proportional counters to select and localize charged particles. Nucl Inst Methods 62:262–268

    Article  Google Scholar 

  8. Bertrand S (2005) Modélisation géométrique 3D in vivo du tronc humain à partir de l'imageur basse dose EOS. Pastel. http://pastel.archives-ouvertes.fr/pastel-00001505. Accessed 9 Feb 2014

  9. Illés T, Somoskeöy S (2012) The EOS™ imaging system and its uses in daily orthopaedic practice. Int Orthop 36:1325–1331

    Article  PubMed Central  PubMed  Google Scholar 

  10. Deschenes S, Charron G, Beaudoin G et al (2010) Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning X-ray imager. Spine 35:989–994

    Article  PubMed  Google Scholar 

  11. Dietrich TJ, Pfirrmann CW, Schwab A et al (2013) Comparison of radiation dose, workflow, patient comfort and financial break-even of standard digital radiography and a novel biplanar low-dose X-ray system for upright full-length lower limb and whole spine radiography. Skelet Radiol 42:959–967

    Article  Google Scholar 

  12. Than P, Szuper K, Warta V et al (2012) Geometrical values of the normal and arthritic hip and knee detected with the EOS imaging system. Int Orthop 36:1291–1297

    Article  PubMed Central  PubMed  Google Scholar 

  13. Gheno R, Nectoux E, Herbaux B et al (2012) Three-dimensional measurements of the lower extremity in children and adolescents using a low-dose biplanar X-ray device. Eur Radiol 22:765–771

    Article  PubMed  Google Scholar 

  14. Ohl X, Stanchina C, Billuart F et al (2010) Shoulder bony landmarks location using the EOS low-dose stereoradiography system: a reproducibility study. Surg Radiol Anat 32:153–158

    Article  PubMed  Google Scholar 

  15. Thelen P, Delin C, Folinais D et al (2012) Evaluation of a new low-dose biplanar system to assess lower-limb alignment in 3D: a phantom study. Skeletal Radiol 41:1287–1293

    Article  PubMed  Google Scholar 

  16. Chaibi Y, Cresson T, Aubert B et al (2012) Fast 3D reconstruction of the lower limb using a parametric model and statistical inferences and clinical measurements calculation from biplanar X-rays. Comput Methods Biomech Biomed Eng 15:457–466

    Article  CAS  Google Scholar 

  17. Morvan G, Vuillemin V, Guerini H et al (2013) L’homme debout. Imagerie. Le système EOS. e-mémoires de l'Académie Nationale de Chirurgie 12:006–017. http://www.academie-chirurgie.fr/ememoires/005_2013_12_2_006x017.pdf. Accessed 9 Feb 2014

  18. Journé A, Sadaka J, Bélicourt C et al (2012) New method for measuring acetabular component positioning with EOS imaging: feasibility study on dry bone. Int Orthop 36:2205–2209

    Article  PubMed Central  PubMed  Google Scholar 

  19. Guenoun B, Zadegan F, Aim F et al (2012) Reliability of a new method for lower-extremity measurements based on stereoradiographic three-dimensional reconstruction. Orthop Traumatol Surg Res 98:506–513

    Article  CAS  PubMed  Google Scholar 

  20. Folinais D, Thelen P, Delin C et al (2013) Measuring femoral and rotational alignment: EOS system versus computed tomography. Orthop Traumatol Surg Res 99:509–516

    Article  CAS  PubMed  Google Scholar 

  21. Assi A, Chaibi Y, Presedo A et al (2013) Three-dimensional reconstructions for asymptomatic and cerebral palsy children’s lower limbs using a biplanar X-ray system: a feasibility study. Eur J Radiol 82:2359–2364

    Article  PubMed  Google Scholar 

  22. Gaumétou E, Quijano S, Ilharreborde B et al (2014) EOS analysis of lower extremity segmental torsion in children and young adults. Orthop Traumatol Surg Res 100:147–151

    Article  PubMed  Google Scholar 

  23. Than P, Sillinger T, Kránicz J et al (2004) Radiographic parameters of the hip joint from birth to adolescence. Pediatr Radiol 34:237–244

    Article  PubMed  Google Scholar 

  24. Ruff C (2007) Body size prediction from juvenile skeletal remains. Am J Phys Anthropol 133:698–716

    Article  PubMed  Google Scholar 

  25. Sabharwal S, Zhao C (2009) The hip-knee-ankle angle in children: reference values based on a full-length standing radiograph. J Bone Joint Surg Am 91:2461–2468

    Article  PubMed  Google Scholar 

  26. Winer BJ (1971) Statistical principles in experimental design, 2nd edn. McGraw Hill, New York

    Google Scholar 

  27. Azmy C, Guérard S, Bonnet X et al (2010) EOS orthopaedic imaging system to study patellofemoral kinematics: assessment of uncertainty. Orthop Traumatol Surg Res 96:28–36

    Article  CAS  PubMed  Google Scholar 

  28. Lazennec JY, Rangel A, Baudoin A et al (2011) The EOS imaging system for understanding a patellofemoral disorder following THR. Orthop Traumatol Surg Res 97:98–101

    Article  PubMed  Google Scholar 

  29. Piriou P, Bugyan H, Casalonga D et al (2013) Can hip anatomy be reconstructed with femoral components having only one neck morphology? A study on 466 hips. J Arthroplasty 28:1185–1191

    Article  PubMed  Google Scholar 

  30. Schmitz MR, Bittersohl B, Zaps D et al (2013) Spectrum of radiographic femoroacetabular impingement morphology in adolescents and young adults: an EOS-based double-cohort study. J Bone Joint Surg Am 95:e90

    Article  PubMed  Google Scholar 

  31. Boutry N, Dutouquet B, Leleu X et al (2013) Low-dose biplanar skeletal survey versus digital skeletal survey in multiple myeloma. Eur Radiol 23:2236–2245

    Article  PubMed  Google Scholar 

  32. Fabry G, MacEwen GD, Shands AR (1973) Torsion of the femur. A follow-up study in normal and abnormal conditions. J Bone Joint Surg Am 55:1726–1738

    CAS  PubMed  Google Scholar 

  33. Hamacher P (1974) Röntgenologische normal werte des hüftgelenks, CCD- und AT-Winkel. Orthop Praxis 10:23–28

    Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Than.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szuper, K., Schlégl, Á.T., Leidecker, E. et al. Three-dimensional quantitative analysis of the proximal femur and the pelvis in children and adolescents using an upright biplanar slot-scanning X-ray system. Pediatr Radiol 45, 411–421 (2015). https://doi.org/10.1007/s00247-014-3146-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-014-3146-2

Keywords

Navigation