Skip to main content

Advertisement

Log in

Fusion and subtraction post-processing in body MRI

  • Technical Innovation
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Interpreting complex paediatric body MRI studies requires the integration of information from multiple sequences. Image processing software, some freely available, allows the radiologist to use simple and rapid post-processing techniques that may aid diagnosis. We demonstrate the use of fusion and subtraction post-processing techniques with examples from four areas of application: enterography, oncological imaging, musculoskeletal imaging and MR fistulography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rosset A, Spadola L, Ratib O (2004) Osirix: an open source software for navigating in multidimensional DICOM images. J Digit Imaging 17:205–216

    Article  PubMed Central  PubMed  Google Scholar 

  2. Kawasumi Y, Yamada T, Ota H et al (2008) High-resolution monochrome liquid crystal display versus efficient household colour liquid crystal display: comparison of their diagnostic performance with unenhanced CT images in focal liver lesions. Eur Radiol 18:2148–2154

    Article  PubMed  Google Scholar 

  3. Townsend DW (2008) Combined PET/CT: the historical perspective. Semin Ultrasound CT MR 29:232–235

    Article  PubMed Central  PubMed  Google Scholar 

  4. Gaertner FC, Fürst S, Schwaiger M (2013) PET/MR: a paradigm shift. Cancer Imaging 13:36–52

    Article  PubMed Central  PubMed  Google Scholar 

  5. Spadola L, Rosset A, Seeger L et al (2005) ‘Color fusion MRI’: an effective technique for image visualization in a variety of clinical applications. Med Imaging. doi:10.1117/12.594643

    Google Scholar 

  6. Mir N, Sohaib SA, Collins D et al (2010) Fusion of high b-value diffusion-weighted and T2-weighted MR images improves identification of lymph nodes in the pelvis. J Med Imaging Radiat Oncol 54:358–364

    Article  CAS  PubMed  Google Scholar 

  7. Nechifor-Boilă IA, Bancu S, Buruian M et al (2013) Diffusion weighted imaging with background body signal suppression/T2 image fusion in magnetic resonance mammography for breast cancer diagnosis. Chirurgia (Bucur) 108:199–205

    Google Scholar 

  8. Tay KL, Yang JL, Phal PM et al (2011) Assessing signal intensity change on well-registered images: comparing subtraction, color-encoded subtraction, and parallel display formats. Radiology 260:400–407

    Article  PubMed  Google Scholar 

  9. Bhatia M, Rosset A, Platon A et al (2010) Technical innovation: multidimensional computerized software enabled subtraction computed tomographic angiography. J Comput Assist Tomogr 34:465–468

    Article  PubMed  Google Scholar 

  10. Sebag G, Ducou Le Pointe H, Klein I et al (1997) Dynamic gadolinium-enhanced subtraction MR imaging — a simple technique for the early diagnosis of Legg-Calvé-Perthes disease: preliminary results. Pediatr Radiol 27:216–220

    Article  CAS  PubMed  Google Scholar 

  11. Tsili AC, Argyropoulou MI, Astrakas LG et al (2013) Dynamic contrast-enhanced subtraction MRI for characterizing intratesticular mass lesions. AJR Am J Roentgenol 200:578–585

    Article  PubMed  Google Scholar 

  12. Ruehm SG, Nanz D, Baumann A et al (2001) 3D contrast-enhanced MR angiography of the run-off vessels: value of image subtraction. J Magn Reson Imaging 13:402–411

    Article  CAS  PubMed  Google Scholar 

  13. Watanabe Y, Dohke M, Okumura A et al (2000) Dynamic subtraction contrast-enhanced MR angiography: technique, clinical applications, and pitfalls. Radiographics 20:135–152

    Article  CAS  PubMed  Google Scholar 

  14. Boss A, Schaefer JF, Martirosian P et al (2006) Contrast-enhanced dynamic MR nephrography using the TurboFLASH navigator-gating technique in children. Eur Radiol 16:1509–1518

    Article  PubMed  Google Scholar 

  15. Cuffari C (2009) Diagnostic considerations in pediatric inflammatory bowel disease management. Gastroenterol Hepatol 5:775–783

    Google Scholar 

  16. Neubauer H, Pabst T, Dick A et al (2013) Small-bowel MRI in children and young adults with Crohn disease: retrospective head-to-head comparison of contrast-enhanced and diffusion-weighted MRI. Pediatr Radiol 43:103–114

    Article  PubMed  Google Scholar 

  17. Ziech ML, Lavini C, Caan MW et al (2012) Dynamic contrast-enhanced MRI in patients with luminal Crohn’s disease. Eur J Radiol 81:3019–3027

    Article  CAS  PubMed  Google Scholar 

  18. Humphries PD, Siegel M, Sebire N et al (2007) Tumors in pediatric patients at diffusion-weighted MR imaging: apparent diffusion coefficient and tumor cellularity. Radiology 245:848–854

    Article  PubMed  Google Scholar 

  19. Von Kalle T, Winkler P, Stuber T (2013) Contrast-enhanced MRI of normal temporomandibular joints in children — is there enhancement or not? Rheumatology 52:363–367

    Article  Google Scholar 

Download references

Acknowledgments

This work was presented at the annual meeting of the European Society of Paediatric Radiology in Budapest, Hungary, in 2013.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom A Watson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

A Watson, T., Olsen, Ø.E. Fusion and subtraction post-processing in body MRI. Pediatr Radiol 45, 273–282 (2015). https://doi.org/10.1007/s00247-014-3129-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-014-3129-3

Keywords

Navigation