Skip to main content

Advertisement

Log in

Dose indices: everybody wants a number

  • Image Gently ALARA CT summit: How to Use New CT Technologies for Children
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

This paper discusses the merits and weaknesses of the standard terms that have been developed to quantify CT dose: CT dose indices (CTDI), dose length product (DLP) and effective dose. The difference between the measured CTDIvol and the CTDIvol displayed on the CT scanner illustrates a clinical dilemma. Displayed CTDIvol represents the radiation dose delivered to a plastic phantom, which is significantly different from the dose delivered to the patient, depending on the size of the patient. Although effective dose is simple to calculate for an individual patient, it was never intended for this purpose. The need for a simple, appropriate method to estimate pediatric patient doses led to the development of the size-specific dose estimate (SSDE), the newest CT dose index. Here I compare SSDE and its merits to the use of effective dose to estimate patient dose. The discussion concludes with a few sample calculations and basic clinical applications of SSDE to better quantify pediatric patient dose from CT scans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Brody AS, Frush DP, Huda W et al (2007) Radiation risk to children from computed tomography. Pediatrics 120:677–682

    Article  PubMed  Google Scholar 

  2. Shrimpton PC, Edyvean S (1998) CT scanner dosimetry. Br J Radiol 71:1–3

    Article  PubMed  CAS  Google Scholar 

  3. Shrimpton PC, Hart D, Hillier MC et al (1991) Survey of CT practice in the UK. Part 1: aspects of examination frequency and quality assurance. National Radiological Protection Board, Chilton

    Google Scholar 

  4. Brenner DJ, Hall EJ (2007) Computed tomography — an increasing source of radiation exposure. New Engl J Med 357:2277–2284

    Article  PubMed  CAS  Google Scholar 

  5. Larson DB, Johnson LW, Schnell BM et al (2011) Rising use of CT in child visits to the emergency department in the United States, 1995–2008. Radiology 259:793–801

    Article  PubMed  Google Scholar 

  6. Brenner D, Elliston C, Hall E et al (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 176:289–296

    Article  PubMed  CAS  Google Scholar 

  7. Frush DP, Donnelly LF, Rosen NS (2003) Computed tomography and radiation risks: what pediatric health care providers should know. Pediatrics 112:951–957

    Article  PubMed  Google Scholar 

  8. Mathews JD, Forsythe AV, Brady Z et al (2013) Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. Br Med J 346:f2360

    Article  Google Scholar 

  9. Hall EJ (2002) Lessons we have learned from our children: cancer risks from diagnostic radiology. Pediatr Radiol 32:700–706

    Article  PubMed  Google Scholar 

  10. Berdon WE, Slovis TL (2002) Where we are since ALARA and the series of articles on CT dose in children and risk of long-term cancers: what has changed? Pediatr Radiol 32:699

    Article  PubMed  Google Scholar 

  11. Slovis TL (2002) The ALARA concept in pediatric CT: myth or reality? Radiology 223:5–6

    Article  PubMed  Google Scholar 

  12. Shope TB, Gagne RM, Johnson GC (1981) A method for describing the doses delivered by transmission X-ray computed tomography. Med Phys 8:488–495

    Article  PubMed  CAS  Google Scholar 

  13. Strauss KJ, Goske MJ, Frush DP et al (2009) Image Gently vendor summit: working together for better estimates of pediatric radiation dose from CT. AJR Am J Roentgenol 192:1169–1175

    Article  PubMed  Google Scholar 

  14. Boone JM, Strauss KJ, Cody DD et al (2011) Size-specific dose estimates (SSDE) in pediatric and adult body CT examinations. American Association of Physicists in Medicine, College Park, MD

  15. Huda W, Ogden KM (2008) Computing effective doses to pediatric patients undergoing body CT examinations. Pediatr Radiol 38:415–423

    Article  PubMed  Google Scholar 

  16. McCollough CH, Schueler BA (2000) Calculation of effective dose. Med Phys 27:828–837

    Article  PubMed  CAS  Google Scholar 

  17. Bushberg JT, Seibert JA, Leidholt EM et al (2012) The essential physics of medical imaging. Lippincott, Williams & Wilkins, Philadelphia, p 1030

    Google Scholar 

  18. McNitt-Gray MF (2002) AAPM/RSNA physics tutorial for residents: topics in CT. Radiation dose in CT. Radiographics 22:1541–1553

    Article  PubMed  Google Scholar 

  19. Commission IE (2002) Medical electrical equipment, part 2–44. Particular requirements for the safetey of X-ray equipment for computed tomography. In: Commission IE (ed) Medical electrical equipment. International Electrotechnical Commission, Geneva

    Google Scholar 

  20. Jessen K, Panzer W, Shrimpton PC et al (2000) European guidelines on quality criteria for computed tomography. Publications Office of the European. Union, Luxembourg

    Google Scholar 

  21. Leitz W, Axelsson B, Szendro G (1995) Computed tomography dose assessment: a practical approach. Radiat Prot Dosimetry 157:377–380

    Google Scholar 

  22. International Commission on Radiological Protection (1991) 1990 recommendations of the International Commission on Radiological Protection. Ann ICRP 21:1–201, HYPERLINK http://www.ncbi.nlm.nih.gov/pubmed/2053748

  23. Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257:158–166

    Article  PubMed  Google Scholar 

  24. Dixon RL (2003) A new look at CT dose measurement: beyond CTDI. Med Phys 30:1272–1280

    Article  PubMed  Google Scholar 

  25. Dixon RL (2006) Restructuring CT dosimetry — a realistic strategy for the future requiem for the pencil chamber. Med Phys 33:3973–3976

    Article  PubMed  Google Scholar 

  26. Boone JM (2007) The trouble with CTD100. Med Phys 34:1364–1371

    Article  PubMed  Google Scholar 

  27. Kleinman PL, Strauss KJ, Zurakowski D et al (2010) Patient size measured on CT images as a function of age at a tertiary care children’s hospital. AJR Am J Roentgenol 194:1611–1619

    Article  PubMed  Google Scholar 

  28. Martin CJ (2007) Effective dose: how should it be applied to medical exposures? Br J Radiol 80:639–647

    Article  PubMed  CAS  Google Scholar 

  29. McCollough CH, Christner JA, Kofler JM (2010) How effective is effective dose as a predictor of radiation risk? AJR Am J Roentgenol 194:890–896

    Article  PubMed  Google Scholar 

  30. Goske MJ, Callahan M, Frush DP et al (2012) The Image Gently campaign: championing radiation protection for children through awareness, educational resources and advocacy. In: Tack D, Kalra MK, Gevenois PA (eds) Radiation dose from multidetector CT. Springer-Verlag, Berlin

    Google Scholar 

  31. Strauss KJ, Goske MJ (2011) Estimated pediatric radiation dose during CT. Pediatr Radiol 41:472–482

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

Keith Strauss provides paid consulting services to Philips Healthcare (Best, The Netherlands) upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith J. Strauss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strauss, K.J. Dose indices: everybody wants a number. Pediatr Radiol 44 (Suppl 3), 450–459 (2014). https://doi.org/10.1007/s00247-014-3104-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-014-3104-z

Keywords

Navigation