Skip to main content

Advertisement

Log in

Neonatal deep white matter venous infarction and liquefaction: a pseudo-abscess lesion

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Deep white matter hemorrhagic venous infarction with subsequent cavitation due to necrosis and liquefaction has been described in neonates and may be associated with infection and meningitis. In our experience, the MRI pattern of these lesions is confused with the pattern seen with cerebral abscesses.

Objective

The purpose of our study was to characterize the MRI findings of post infarction necrosis and liquefaction after hemorrhagic deep white matter venous infarction in infants and to distinguish these lesions from cerebral abscesses.

Materials and methods

An institutional review board approved a retrospective review of imaging records to identify all patients with cerebral venous infarction at a children’s hospital during a 10-year period. Nine infants had deep white matter hemorrhagic venous infarction with white matter fluid signal cavitary lesions. A diagnosis of cerebral abscess was considered in all. The imaging and laboratory findings in these patients are reviewed and compared to descriptions of abscesses found in the literature.

Results

There were six female and three male infants. The mean age at presentation was 20 days (range: 0–90 days), while the corrected age at presentation was less than 30 days for all patients. Seven patients presented with seizures and signs of infection; one infant presented with lethargy and later proved to have protein C deficiency. MRI was performed 0–12 days from presentation in these eight patients. Another patient with known protein C deficiency underwent MRI at 30 days for follow-up of screening US abnormalities. There were a total of 38 deep cerebral white matter fluid signal cavitary lesions: 25 frontal, 9 parietal, 2 temporal, 2 occipital. Larger lesions had dependent debris. All lesions had associated hemorrhage and many lesions had evidence of adjacent small vessel venous thrombosis. Lesions imaged after gadolinium showed peripheral enhancement. Three lesions increased in size on follow-up imaging. Three patients, two with meningitis confirmed via microbiology and one with presumed meningitis by CSF counts, underwent surgical aspiration of a total of six lesions. All specimens were sent for pathology and culture and were negative for microorganisms.

Conclusion

Recognizing the MR appearance of cavitary necrosis and liquefaction after deep white matter cerebral venous infarction in neonates can distinguish this entity from cerebral abscess and potentially avoid an unnecessary neurosurgical aspiration procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barron TF, Gusnard DA, Zimmerman RA et al (1992) Cerebral venous thrombosis in neonates and children. Pediatr Neurol 8:112–116

    Article  PubMed  CAS  Google Scholar 

  2. Sébire G, Tabarki B, Saunders DE et al (2005) Cerebral venous sinus thrombosis in children: risk factors, presentation, diagnosis and outcome. Brain 128:477–489

    Article  PubMed  Google Scholar 

  3. Wasay M, Dai AI, Ansari M et al (2008) Cerebral venous sinus thrombosis in children: a multicenter cohort from the United States. J Child Neurol 23:26–31

    Article  PubMed  Google Scholar 

  4. Berfelo FJ, Kersbergen KJ, van Ommen CH et al (2011) Neonatal cerebral sinovenous thrombosis from symptom to outcome. Stroke 41:1382–1388

    Article  Google Scholar 

  5. Burger PC, Graham DG, Burch JG et al (1978) Hemorrhagic cerebral white matter: infarction with cerebral deep venous thrombosis and hypoxia. Arch Pathol Lab Med 102:40–42

    PubMed  CAS  Google Scholar 

  6. Jan W, Zimmerman RA, Bilaniuk LT et al (2003) Diffusion-weighted imaging in acute bacterial meningitis in infancy. Neuroradiology 45:634–639

    Article  PubMed  CAS  Google Scholar 

  7. Triulzi F, Parazzini C, Righini A (2006) Patterns of damage in the mature neonatal brain. Pediatr Radiol 36:608–620

    Article  PubMed  Google Scholar 

  8. Kersbergen KJ, Groenendaal F, Benders MJ et al (2011) The spectrum of associated brain lesions in cerebral sinovenous thrombosis: relation to gestational age and outcome. Arch Dis Child Fetal Neonatal Ed 96:404–409

    Article  Google Scholar 

  9. Teksam M, Moharir M, Deveber G et al (2008) Frequency and topographic distribution of brain lesions in pediatric cerebral venous thrombosis. AJNR Am J Neuroradiol 29:1961–1965

    Article  PubMed  CAS  Google Scholar 

  10. Nagaraj UD, Rusin JA, McBride KL et al (2013) Magnetic resonance imaging in neonatal citrullinemia. J Pediatr Neurol 2:169–173

    Google Scholar 

  11. Rutherford MA, Supramaniam V, Ederies A et al (2010) Magnetic resonance imaging of white matter diseases of prematurity. Neuroradiology 52:505–521

    Article  PubMed  Google Scholar 

  12. Hedlund GL, Boyer RS (1999) Neuroimaging of postnatal pediatric central nervous system infections. Semin Pediatr Neurol 6:299–317

    Article  PubMed  CAS  Google Scholar 

  13. Eason JD, Peacock D (1996) Plesiomonas shigelloides septicemia and meningitis in a neonate. Can J Infect Dis 7:380–382

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Burdette JH, Santos C (2000) Enterobacter sakazakii brain abscess in the neonate: the importance of neuroradiologic imaging. Pediatr Radiol 30:33–34

    Article  PubMed  CAS  Google Scholar 

  15. Fanning NF, Laffan EE, Shroff MM (2006) Serial diffusion-weighted MRI correlates with clinical course and treatment response in children with intracranial pus collections. Pediatr Radiol 36:26–37

    Article  PubMed  Google Scholar 

  16. de Oliveira RS, Pinho VF, Madureira JF et al (2007) Brain abscess in a neonate: an unusual presentation. Childs Nerv Syst 23:139–142

    Article  PubMed  Google Scholar 

  17. Takeuchi H, Fujita Y, Ogawa H et al (2009) Multiple brain abscesses in neonate caused by Edwardsiella tarda: case report. Neurol Med Chir (Tokyo) 49:85–89

    Article  Google Scholar 

  18. Drazin D, Lehman D, Danielpour M (2010) Successful surgical drainage and aggressive medical therapy in a preterm neonate with Bacillus cereus meningitis. Pediatr Neurosurg 46:466–471

    Article  PubMed  Google Scholar 

  19. Phan H, Lehman D (2012) Cerebral abscess complicating Proteus mirabilis meningitis in a newborn infant. J Child Neurol 27:405–407

    Article  PubMed  Google Scholar 

  20. Qureshi UA, Wani NA, Charoo BA et al (2011) Klebsiella brain abscess in a neonate. Arch Dis Child Fetal Neonatal Ed 96:F19

    Article  PubMed  Google Scholar 

  21. Barnes PD, Poussaint TY, Burrows PE (1994) Imaging of pediatric central nervous system infections. Neuroimaging Clin N Am 4:367–391

    PubMed  CAS  Google Scholar 

  22. Hernández MI, Sandoval CC, Tapia JL et al (2011) Stroke patterns in neonatal group B streptococcal meningitis. Pediatr Neurol 44:282–288

    Article  PubMed  Google Scholar 

  23. Blaser S, Jay V, Becker LE et al (2002) Neonatal brain infection. In: Rutherford M (ed) MRI of the neonatal brain. Saunders, London, pp 201–223

    Google Scholar 

  24. Willis J, Robinson JE (1988) Enterobacter sakazakii meningitis in neonates. Pediatr Infect Dis J 7:196–199

    Article  PubMed  CAS  Google Scholar 

  25. Meier A, Chusid MJ, Sty JR (1998) Neonatal citrobacter meningitis: neurosonographic observations. J Ultrasound Med 17:399–401

    PubMed  CAS  Google Scholar 

  26. Gallagher PG, Ball WS (1991) Cerebral infarctions due to CNS infection with Enterobacter sakazakii. Pediatr Radiol 21:135–136

    Article  PubMed  CAS  Google Scholar 

  27. Britt RH, Enzmann DR, Yeager AS (1981) Neuropathological and computerized tomographic findings in experimental brain abscess. J Neurosurg 55:590–603

    Article  PubMed  CAS  Google Scholar 

  28. Haimes AB, Zimmerman RD, Morgello S et al (1989) MR imaging of brain abscesses. AJR Am J Roentgenol 152:1073–1085

    Article  PubMed  CAS  Google Scholar 

  29. Dev R, Gupta RK, Poptani H et al (1998) Role of in vivo proton magnetic resonance spectroscopy in the diagnosis and management of brain abscesses. Neurosurgery 42:37–42

    Article  PubMed  CAS  Google Scholar 

  30. Pal D, Bhattacharyya A, Husain M et al (2010) In vivo proton MR spectroscopy evaluation of pyogenic brain abscesses: a report of 194 cases. AJNR Am J Neuroradiol 31:360–366

    Article  PubMed  CAS  Google Scholar 

  31. Abou Zeid N, Pirko I, Erickson B et al (2012) Diffusion-weighted imaging characteristics of biopsy-proven demyelinating brain lesions. Neurology 78:1655–1662

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Hartmann M, Jansen O, Heiland S et al (2001) Restricted diffusion within ring enhancement is not pathognomonic for brain abscess. AJNR Am J Neuroradiol 22:1738–1742

    PubMed  CAS  Google Scholar 

  33. Burtscher IM, Holtås S (1999) In vivo proton MR spectroscopy of untreated and treated brain abscesses. AJNR Am J Neuroradiol 20:1049–1053

    PubMed  CAS  Google Scholar 

  34. Forbes KP, Pipe JG, Heiserman JE (2001) Evidence for cytotoxic edema in the pathogenesis of cerebral venous infarction. AJNR Am J Neuroradiol 22:450–455

    PubMed  CAS  Google Scholar 

  35. Atlas SW, DuBois P, Singer MB et al (2000) Diffusion measurements in intracranial hematomas: implications for MR imaging of acute stroke. AJNR Am J Neuroradiol 21:1190–1194

    PubMed  CAS  Google Scholar 

  36. Hsu LC, Lirng JF, Fuh JL et al (1998) Proton magnetic resonance spectroscopy in deep cerebral venous thrombosis. Clin Neurol Neurosurg 100:27–30

    Article  PubMed  CAS  Google Scholar 

  37. Govaert P, Ramenghi L, Toal R et al (2009) Diagnosis of perinatal stroke 1: definitions, differential diagnosis and registration. Acta Paediatr 98:1720–1726

    Article  PubMed  CAS  Google Scholar 

  38. Gould SJ, Howard S, Hope PL et al (1987) Periventricular intraparenchymal cerebral haemorrhage in preterm infants: the role of venous infarction. J Pathol 151:197–202

    Article  PubMed  CAS  Google Scholar 

  39. Takashima S, Mito T, Ando Y (1986) Pathogenesis of periventricular white matter hemorrhages in preterm infants. Brain Dev 8:25–30

    Article  PubMed  CAS  Google Scholar 

  40. Dudink J, Lequin M, Weisglas-Kuperus N et al (2008) Venous subtypes of preterm periventricular haemorrhagic infarction. Arch Dis Child Fetal Neonatal Ed 93:201–206

    Article  Google Scholar 

  41. Foreman SD, Smith EE, Ryan NJ et al (1984) Neonatal Citrobacter meningitis: pathogenesis of cerebral abscess formation. Ann Neurol 16:655–659

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Presented at the Annual Meeting of the Society for Pediatric Radiology, San Francisco, CA April 17–20, 2012.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne Ruess.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruess, L., Dent, C.M., Tiarks, H.J. et al. Neonatal deep white matter venous infarction and liquefaction: a pseudo-abscess lesion. Pediatr Radiol 44, 1393–1402 (2014). https://doi.org/10.1007/s00247-014-3006-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-014-3006-0

Keywords

Navigation