Skip to main content

Advertisement

Log in

What did we learn from two decades of chest computed tomography in cystic fibrosis?

  • Minisymposium
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Despite our current treatment, many cystic fibrosis (CF) patients still show progressive bronchiectasis and small airways disease. Adequate detection and monitoring of progression of these structural abnormalities is needed to personalize treatment to the severity of CF lung disease of the patient. Chest computed tomography (CT) is the gold standard to diagnose and monitor bronchiectasis. Many studies have been done to validate the role of chest CT in CF and to improve the protocols. From these studies it became clear that for correct interpretation of the severity of bronchiectasis and small airways disease standardization of lung volume for the inspiratory and expiratory CT scan acquisition is needed. The risk related to the radiation exposure of a chest CT scan every second year is considered low. Automated and quantitative image analysis systems are developed to improve the reliability and sensitivity of assessments of structural lung changes in CF, particularly in early life. In this paper an overview is given of the lessons learned from two decades of monitoring CF lung disease using chest CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Armstrong DS, Grimwood K, Carlin JB et al (1997) Lower airway inflammation in infants and young children with cystic fibrosis. Am J Respir Crit Care Med 156:1197–1204

    Article  CAS  PubMed  Google Scholar 

  2. Nixon GM, Armstrong DS, Carzino R et al (2002) Early airway infection, inflammation, and lung function in cystic fibrosis. Arch Dis Child 87:306–311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Sly PD, Brennan S, Gangell C et al (2009) Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am J Respir Crit Care Med 180:146–152

    Article  PubMed  Google Scholar 

  4. Sly PD, Gangell CL, Chen L et al (2013) Risk factors for bronchiectasis in children with cystic fibrosis. N Engl J Med 368:1963–1970

    Article  CAS  PubMed  Google Scholar 

  5. Bennett TI (1945) Discussion on the stethoscope versus X-rays. Proc R Soc Med 355:7–9

    Google Scholar 

  6. Young K, Aspestrand F, Kolbenstvedt A (1991) High resolution CT and bronchography in the asssessment of bronchiectasis. Acta Radiol 32:439–441

    Article  CAS  PubMed  Google Scholar 

  7. Hansell DM (1998) Bronchiectasis. Radiol Clin North Am 36:107–128

    Article  CAS  PubMed  Google Scholar 

  8. Munro NC, Cooke JC, Currie DC et al (1990) Comparison of thin section computed tomography with bronchography for identifying bronchiectatic segments in patients with chronic sputum production. Thorax 45:135–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Webb R, Muller NL, Naidich DP (eds) (2008) High-resolution CT of the lung. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  10. Loeve M, van Hal PT, Robinson P et al (2009) The spectrum of structural abnormalities on CT scans from patients with CF with severe advanced lung disease. Thorax 64:876–882

    Article  CAS  PubMed  Google Scholar 

  11. Loeve M, Hop WC, de Bruijne M et al (2012) Chest computed tomography scores are predictive of survival in patients with cystic fibrosis awaiting lung transplantation. Am J Respir Crit Care Med 185:1096–1103

    Article  PubMed  Google Scholar 

  12. Davis S, Fordham LA, Brody AS et al (2007) Computed tomography reflects lower airway inflammation and tracks changes in early cystic fibrosis. Am J Respir Crit Care Med 175:943–950

    Article  PubMed  Google Scholar 

  13. de Jong PA, Nakano Y, Lequin MH et al (2004) Progressive damage on high-resolution computed tomography despite stable lung function in CF. Eur Respir J 23:93–97

    Article  PubMed  Google Scholar 

  14. Loeve M, Gerbrands K, Hop WC et al (2010) Bronchiectasis and pulmonary exacerbations in children and young adults with cystic fibrosis. Chest 140:178–185

    Article  PubMed  Google Scholar 

  15. Tepper LA, Utens E, Caudri D et al (2013) Impact of bronchiectasis and trapped air on quality of life and exacerbations in CF. Eur Respir J 42:371–379

    Article  PubMed  Google Scholar 

  16. Goris ML, Zhu HJ, Blankenberg F et al (2003) An automated approach to quantitative air trapping measurements in mild cystic fibrosis. Chest 123:1655–1663

    Article  PubMed  Google Scholar 

  17. Robinson TE, Leung AN, Northway WH et al (2001) Spirometer-triggered high-resolution computed tomography and pulmonary function measurements during an acute exacerbation in patients with cystic fibrosis. J Pediatr 138:553–559

    Article  CAS  PubMed  Google Scholar 

  18. Robinson TE, Leung AN, Moss RB et al (1999) Standardized high-resolution CT of the lung using a spirometer-triggered electron beam CT scanner. AJR Am J Roentgenol 172:1636–1638

    Article  CAS  PubMed  Google Scholar 

  19. Long FR, Williams RS, Castile RG (2004) Structural airway abnormalities in infants and young children with cystic fibrosis. J Pediatr 144:154–161

    Article  PubMed  Google Scholar 

  20. Tiddens HA, Koopman LP, Lambert RK et al (2000) Cartilaginous airway wall dimensions and airway resistance in cystic fibrosis lungs. Eur Respir J 15:735–742

    Article  CAS  PubMed  Google Scholar 

  21. de Jong PA, Ottink MD, Robben SGF et al (2004) Pulmonary disease assessment in cystic fibrosis: Comparison of CT scoring systems and value of bronchial and arterial dimension measurements. Radiology 231:434–439

    Article  PubMed  Google Scholar 

  22. Tiddens HA, Donaldson SH, Rosenfeld M et al (2010) Cystic fibrosis lung disease starts in the small airways: Can we treat it more effectively? Pediatr Pulmonol 45:107–117

    Article  PubMed  Google Scholar 

  23. McDermott S, Barry SC, Judge EE et al (2009) Tracheomalacia in adults with cystic fibrosis: determination of prevalence and severity with dynamic cine CT. Radiology 252:577–586

    Article  PubMed  Google Scholar 

  24. Stick SM, Brennan S, Murray C et al (2009) Bronchiectasis in infants and preschool children diagnosed with cystic fibrosis after newborn screening. J Pediatr 155:623–628

    Article  PubMed  Google Scholar 

  25. Mott LS, Gangell CL, Murray CP et al (2009) Bronchiectasis in an asymptomatic infant with cystic fibrosis diagnosed following newborn screening. J Cyst Fibros 8:285–287

    Article  PubMed  Google Scholar 

  26. Mott LS, Park J, Murray CP et al (2012) Progression of early structural lung disease in young children with cystic fibrosis assessed using CT. Thorax 67:509–516

    Article  PubMed  Google Scholar 

  27. Wainwright CE, Vidmar S, Armstrong DS et al (2011) Effect of bronchoalveolar lavage-directed therapy on Pseudomonas aeruginosa infection and structural lung injury in children with cystic fibrosis: a randomized trial. JAMA 306:163–171

    CAS  PubMed  Google Scholar 

  28. Tiddens HA (2002) Detecting early structural lung damage in cystic fibrosis. Pediatr Pulmonol 34:228–231

    Article  PubMed  Google Scholar 

  29. Owens CM, Aurora P, Stanojevic S et al (2011) Lung Clearance Index and HRCT are complementary markers of lung abnormalities in young children with CF. Thorax 66:481–488

    Article  CAS  PubMed  Google Scholar 

  30. de Jong PA, Lindblad A, Rubin L et al (2006) Progression of lung disease on computed tomography and pulmonary function tests in children and adults with cystic fibrosis. Thorax 61:80–85

    Article  PubMed Central  PubMed  Google Scholar 

  31. Tiddens HA, Stick SM, Davis S (2014) Multi-modality monitoring of cystic fibrosis lung disease: the role of chest computed tomography. Paediatr Respir Rev 15:92–97

    PubMed  Google Scholar 

  32. de Jong PA, Nakano Y, Lequin MH et al (2005) Dose reduction for CT in children with cystic fibrosis: is it feasible to reduce the number of images per scan. Pediatr Radiol 36:50–53

    Article  PubMed  Google Scholar 

  33. Loeve M, de Bruijne M, Hartmann IC et al (2012) Three-section expiratory CT: insufficient for trapped air assessment in patients with cystic fibrosis? Radiology 262:969–976

    Article  PubMed  Google Scholar 

  34. Willemink MJ, de Jong PA (2013) Pediatric chest computed tomography at a radiation dose approaching a chest radiograph. Am J Respir Crit Care Med 188:626–627

    Article  PubMed  Google Scholar 

  35. de Jong PA, Mayo JR, Golmohammadi K et al (2005) Estimation of cancer mortality associated with repetitive computed tomography scanning (CT) scanning in cystic fibrosis. Am J Respir Crit Care Med 173:199–203

    Article  PubMed  Google Scholar 

  36. Long FR, Castile RG (2001) Technique and clinical applications of full-inflation and end-exhalation controlled-ventilation chest CT in infants and young children. Pediatr Radiol 31:413–422

    Article  CAS  PubMed  Google Scholar 

  37. Long FR, Castile RG, Brody AS et al (1999) Lungs in infants and young children: improved thin-section CT with a noninvasive controlled-ventilation technique–initial experience. Radiology 212:588–593

    Article  CAS  PubMed  Google Scholar 

  38. Long FR, Williams RS, Adler BH et al (2005) Comparison of quiet breathing and controlled ventilation in the high-resolution CT assessment of airway disease in infants with cystic fibrosis. Pediatr Radiol 35:1075–1080

    Article  PubMed  Google Scholar 

  39. Long FR, Williams RS, Castile RG (2005) Inspiratory and expiratory CT lung density in infants and young children. Pediatr Radiol 35:677–683

    Article  PubMed  Google Scholar 

  40. de Jong PA, Nakano Y, Hop WC et al (2005) Changes in airway dimensions on computed tomography scans of children with cystic fibrosis. Am J Respir Crit Care Med 172:218–224

    Article  PubMed  Google Scholar 

  41. Lever S, van der Wiel EC, Koch A et al (2009) Feasibility of spirometry controlled chest CT in children. Eur Respir J 34:A344

    Google Scholar 

  42. Bonnel AS, Song SM, Kesavarju K et al (2004) Quantitative air-trapping analysis in children with mild cystic fibrosis lung disease. Pediatr Pulmonol 38:396–405

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harm A. W. M. Tiddens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiddens, H.A.W.M., Rosenow, T. What did we learn from two decades of chest computed tomography in cystic fibrosis?. Pediatr Radiol 44, 1490–1495 (2014). https://doi.org/10.1007/s00247-014-2964-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-014-2964-6

Keywords

Navigation