Advertisement

Pediatric Radiology

, Volume 44, Issue 4, pp 376–386 | Cite as

Fetal magnetic resonance imaging: jumping from 1.5 to 3 tesla (preliminary experience)

  • Teresa VictoriaEmail author
  • Diego Jaramillo
  • Timothy Paul Leslie Roberts
  • Deborah Zarnow
  • Ann Michelle Johnson
  • Jorge Delgado
  • Erika Rubesova
  • Arastoo Vossough
Review

Abstract

Several attempts have been made at imaging the fetus at 3 T as part of the continuous search for increased image signal and better anatomical delineation of the developing fetus. Until very recently, imaging of the fetus at 3 T has been disappointing, with numerous artifacts impeding image analysis. Better magnets and coils and improved technology now allow imaging of the fetus at greater magnetic strength, some hurdles in the shape of imaging artifacts notwithstanding. In this paper we present the preliminary experience of evaluating the developing fetus at 3 T and discuss several artifacts encountered and techniques to decrease them, as well as safety concerns associated with scanning the fetus at higher magnetic strength.

Keywords

Magnetic resonance imaging Fetus 3.0 tesla Safety Artifacts 

Notes

Conflicts of interest

None

References

  1. 1.
    Smith FW, Adam AH, Phillips WD (1983) NMR imaging in pregnancy. Lancet 1:61–62PubMedCrossRefGoogle Scholar
  2. 2.
    Stark DD, McCarthy SM, Filly RA et al (1985) Pelvimetry by magnetic resonance imaging. AJR Am J Roentgenol 144:947–950PubMedCrossRefGoogle Scholar
  3. 3.
    DeLano MC, Fisher C (2006) 3 T MR imaging of the brain. Magn Reson Imaging Clin N Am 14:77–88PubMedCrossRefGoogle Scholar
  4. 4.
    Kuo R, Panchal M, Tanenbaum L et al (2007) 3.0 Tesla imaging of the musculoskeletal system. J Magn Reson Imaging 25:245–261PubMedCrossRefGoogle Scholar
  5. 5.
    Chang KJ, Kamel IR, Macura KJ et al (2008) 3.0-T MR imaging of the abdomen: comparison with 1.5 T. Radiographics 28:1983–1998PubMedCrossRefGoogle Scholar
  6. 6.
    Barth MM, Smith MP, Pedrosa I et al (2007) Body MR imaging at 3.0 T: understanding the opportunities and challenges. Radiographics 27:1445–1462, discussion 1462–1464Google Scholar
  7. 7.
    Erturk SM, Alberich-Bayarri A, Herrmann KA et al (2009) Use of 3.0-T MR imaging for evaluation of the abdomen. Radiographics 29:1547–1563PubMedCrossRefGoogle Scholar
  8. 8.
    Glockner JF, Hu HH, Stanley DW et al (2005) Parallel MR imaging: a user’s guide. Radiographics 25:1279–1297PubMedCrossRefGoogle Scholar
  9. 9.
    De Bazelaire CM, Duhamel GD, Rofsky NM et al (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230:652–659PubMedCrossRefGoogle Scholar
  10. 10.
    Hedrick HL, Danzer E, Merchant A et al (2007) Liver position and lung-to-head ratio for prediction of extracorporeal membrane oxygenation and survival in isolated left congenital diaphragmatic hernia. Am J Obstet Gynecol 197:e421–e424CrossRefGoogle Scholar
  11. 11.
    Victoria T, Bebbington MW, Danzer E et al (2012) Use of magnetic resonance imaging in prenatal prognosis of the fetus with isolated left congenital diaphragmatic hernia. Prenat Diagn 32:715–723PubMedCrossRefGoogle Scholar
  12. 12.
    Jani J, Cannie M, Sonigo P et al (2008) Value of prenatal magnetic resonance imaging in the prediction of postnatal outcome in fetuses with diaphragmatic hernia. Ultrasound Obstet Gynecol 32:793–799PubMedCrossRefGoogle Scholar
  13. 13.
    Victoria T, Danzer E, Adzick NS (2013) Use of ultrasound and MRI for evaluation of lung volumes in fetuses with isolated left congenital diaphragmatic hernia. Semin Pediatr Surg 22:30–36PubMedCrossRefGoogle Scholar
  14. 14.
    Victoria T, Epelman M, Coleman BG et al (2013) Low-dose fetal CT in the prenatal evaluation of skeletal dysplasias and other severe skeletal abnormalities. AJR Am J Roentgenol 200:989–1000PubMedCrossRefGoogle Scholar
  15. 15.
    Zizka J, Elias P, Hodik K et al (2006) Liver, meconium, haemorrhage: the value of T1-weighted images in fetal MRI. Pediatr Radiol 36:792–801PubMedCrossRefGoogle Scholar
  16. 16.
    Saguintaah M, Couture A, Veyrac C et al (2002) MRI of the fetal gastrointestinal tract. Pediatr Radiol 32:395–404PubMedCrossRefGoogle Scholar
  17. 17.
    Rubesova E, Vance CJ, Ringertz HG et al (2009) Three-dimensional MRI volumetric measurements of the normal fetal colon. AJR Am J Roentgenol 192:761–765PubMedCrossRefGoogle Scholar
  18. 18.
    Soher BJ, Dale BM, Merkle EM (2007) A review of MR physics: 3 T versus 1.5 T. Magn Reson Imaging Clin N Am 15:277–290PubMedCrossRefGoogle Scholar
  19. 19.
    Franklin KM, Dale BM, Merkle EM (2008) Improvement in B1-inhomogeneity artifacts in the abdomen at 3 T MR imaging using a radiofrequency cushion. J Magn Reson Imaging 27:1443–1447PubMedCrossRefGoogle Scholar
  20. 20.
    Kataoka M, Isoda H, Maetani Y et al (2007) MR imaging of the female pelvis at 3 tesla: evaluation of image homogeneity using different dielectric pads. J Magn Reson Imaging 26:1572–1577PubMedCrossRefGoogle Scholar
  21. 21.
    Vernickel P, Roschmann P, Findeklee C et al (2007) Eight-channel transmit/receive body MRI coil at 3 T. Magn Reson Med 58:381–389PubMedCrossRefGoogle Scholar
  22. 22.
    Ullmann P, Junge S, Wick M et al (2005) Experimental analysis of parallel excitation using dedicated coil setups and simultaneous RF transmission on multiple channels. Magn Reson Med 54:994–1001PubMedCrossRefGoogle Scholar
  23. 23.
    Willinek WA, Gieseke J, Kukuk GM et al (2010) Dual-source parallel radiofrequency excitation body MR imaging compared with standard MR imaging at 3.0 T: initial clinical experience. Radiology 256:966–975PubMedCrossRefGoogle Scholar
  24. 24.
    Baker PN, Johnson IR, Harvey PR et al (1994) A three-year follow-up of children imaged in utero with echo-planar magnetic resonance. Am J Obstet Gynecol 170:32–33PubMedCrossRefGoogle Scholar
  25. 25.
    Kanal E, Gillen J, Evans JA et al (1993) Survey of reproductive health among female MR workers. Radiology 187:395–399PubMedGoogle Scholar
  26. 26.
    Myers C, Duncan KR, Gowland PA et al (1998) Failure to detect intrauterine growth restriction following in utero exposure to MRI. Br J Radiol 71:549–551PubMedGoogle Scholar
  27. 27.
    Denegre JM, Valles JM Jr, Lin K et al (1998) Cleavage planes in frog eggs are altered by strong magnetic fields. Proc Natl Acad Sci U S A 95:14729–14732PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Hand JW, Li Y, Hajnal JV (2010) Numerical study of RF exposure and the resulting temperature rise in the foetus during a magnetic resonance procedure. Phys Med Biol 55:913–930PubMedCrossRefGoogle Scholar
  29. 29.
    Hand JW, Li Y, Thomas EL et al (2006) Prediction of specific absorption rate in mother and fetus associated with MRI examinations during pregnancy. Magn Reson Med 55:883–893PubMedCrossRefGoogle Scholar
  30. 30.
    Van den Berg CA, van den Bergen B, Van de Kamer JB et al (2007) Simultaneous B1 + homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil. Magn Reson Med 57:577–586PubMedCrossRefGoogle Scholar
  31. 31.
    Homann H, Graesslin I, Eggers H et al (2012) Local SAR management by RF shimming: a simulation study with multiple human body models. MAGMA 25:193–204PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Teresa Victoria
    • 1
    Email author
  • Diego Jaramillo
    • 2
  • Timothy Paul Leslie Roberts
    • 2
  • Deborah Zarnow
    • 2
  • Ann Michelle Johnson
    • 2
  • Jorge Delgado
    • 2
  • Erika Rubesova
    • 3
  • Arastoo Vossough
    • 2
  1. 1.Radiology Department, Center for Fetal Diagnosis and TreatmentThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Radiology DepartmentThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  3. 3.Department of Radiology, Lucile Packard Children’s HospitalStanford UniversityStanfordUSA

Personalised recommendations