Advertisement

Pediatric Radiology

, Volume 44, Issue 4, pp 434–456 | Cite as

Conversion coefficients for determining organ doses in paediatric spine radiography

  • Michael SeidenbuschEmail author
  • Karl Schneider
Original Article

Abstract

Background

Knowledge of organ and effective doses achieved during paediatric x-ray examinations is an important prerequisite for assessment of radiation burden to the patient.

Objective

Conversion coefficients for reconstruction of organ and effective doses from entrance doses for segmental spine radiographs of 0-, 1-, 5-, 10-, 15- and 30-year-old patients are provided regarding the Guidelines of Good Radiographic Technique of the European Commission.

Materials and methods

Using the personal computer program PCXMC developed by the Finnish Centre for Radiation and Nuclear Safety (Säteilyturvakeskus STUK), conversion coefficients for conventional segmental spine radiographs were calculated performing Monte Carlo simulations in mathematical hermaphrodite phantom models describing patients of different ages. The clinical variation of beam collimation was taken into consideration by defining optimal and suboptimal radiation field settings.

Results

Conversion coefficients for the reconstruction of organ doses in about 40 organs and tissues from measured entrance doses during cervical, thoracic and lumbar spine radiographs of 0-, 1-, 5-, 10-, 15- and 30-year-old patients were calculated for the standard sagittal and lateral beam projections and the standard focus detector distance of 115 cm.

Conclusion

The conversion coefficients presented may be used for organ dose assessments from entrance doses measured during spine radiographs of patients of all age groups and all field settings within the optimal and suboptimal standard field settings.

Keywords

Conversion coefficients Organ dose Radiation exposure Spine radiography Children Adolescents 

Notes

Acknowledgement

The authors are indepted to Dr. Val Cook for her competent advice.

Conflicts of interest

None.

References

  1. 1.
    Regulla D, Eder H (2005) Patient exposure in medical X-ray imaging in Europe. Radiat Prot Dosim 114:11–25CrossRefGoogle Scholar
  2. 2.
    Seidenbusch MC (2006) Rekonstruktion von Organ- und Effektivdosen bei konventionellen Röntgenuntersuchungen am Dr. von Haunerschen Kinderspital der Universität München mit einer Berechnung neuer Konversionsfaktoren für die pädiatrische Radiologie. Dissertation, Medizinische Fakultät der Ludwig-Maximilians-Universität München (Reconstruction of organ and effective doses achieved during conventional x-ray examinations in Dr. von Hauner’s Children’s Hospital of the University of Munich and calculation of new conversion coefficients for paediatric radiology. Dissertation, Faculty of Medicine, University of Munich. Translated)Google Scholar
  3. 3.
    Seidenbusch MC, Schneider K (2008) Radiation exposure of children in pediatric radiology. Part 1: referral criteria and X-ray examination frequencies at a university children’s hospital between 1976 and 2003. Fortschr Röntgenstr 180:410–422CrossRefGoogle Scholar
  4. 4.
    Doody MS, Lonstein JE, Stovall M et al (2000) Breast cancer mortality after diagnostic radiography. Findings from the U.S. Scoliosis Cohort Study. Spine 25:2052–2063PubMedCrossRefGoogle Scholar
  5. 5.
    Hoffman DA, Lonstein JE, Morin MM et al (1989) Breast cancer in women with scoliosis exposed to multiple diagnostic X-rays. J Natl Cancer Inst 81:1307–1312PubMedCrossRefGoogle Scholar
  6. 6.
    Levy AR, Goldberg MS, Hanley JA et al (1994) Projecting the lifetime risk of cancer from exposure to diagnostic ionizing radiation for adolescent idiopathic scoliosis. Health Phys 66:621–633PubMedCrossRefGoogle Scholar
  7. 7.
    Almén AJ, Mattsson S (1996) Dose distribution at radiographic examination of the spine in pediatric radiology. Spine 21:750–756PubMedCrossRefGoogle Scholar
  8. 8.
    Gialousis GI, Yakoumakis EN, Papadopoulou DI et al (2006) Differences in effective dose and energy imparted estimation from PA–AP, RLAT–LLAT projections in pediatric full spine x-ray examination using the Monte Carlo technique. Phys Med Biol 51:287–297PubMedCrossRefGoogle Scholar
  9. 9.
    Gialousis GI, Yakoumakis EN, Makri TK et al (2008) Comparison of dose from radiological examination for scoliosis in children among two pediatric hospitals by Monte Carlo simulation. Health Phys 94:471–478PubMedCrossRefGoogle Scholar
  10. 10.
    Rosenstein M (1988) Handbook of selected tissue doses for projections common in diagnostic radiology. HHS Publication (FDA) 89-8031. U.S. Department of Health, Education, and Welfare, Public Health Service, Food and Drug Administration (FDA), Center for Devices and Radiological Health, Rockville, MDGoogle Scholar
  11. 11.
    Hart D, Jones DJ, Wall BF (1996) Normalized organ doses for paediatric x-ray examinations calculated using Monte Carlo techniques. National Radiological Protection Board (Software Report) NRPB-SR279Google Scholar
  12. 12.
    Le Heron JC (1996) Childose-Software. National Radiation Laboratory, Ministry of Health, ChristchurchGoogle Scholar
  13. 13.
    Seidenbusch MC, Regulla D, Schneider K (2008) Radiation exposure of children in pediatric radiology. Part 2: the PAEDOS algorithm for computer-assisted dose reconstruction in pediatric radiology and results for X-ray examinations of the skull. Fortschr Röntgenstr 180:522–539CrossRefGoogle Scholar
  14. 14.
    Seidenbusch MC, Regulla D, Schneider K (2008) Radiation exposure of children in pediatric radiology. Part 3: conversion coefficients for reconstruction of organ doses achieved during chest X-ray examinations. Fortschr Röntgenstr 180:1061–1081CrossRefGoogle Scholar
  15. 15.
    Seidenbusch MC, Regulla D, Schneider K (2009) Radiation exposure of children in pediatric radiology. Part 6: conversion coefficients for reconstruction of organ dose in abdominal radiography. Fortschr Röntgenstr 181:945–961CrossRefGoogle Scholar
  16. 16.
    Seidenbusch MC, Regulla D, Schneider K (2010) Radiation exposure of children in pediatric radiology. Part 7: conversion factors for reconstruction of organ dose during thoracoabdominal babygrams. Fortschr Röntgenstr 182:415–421CrossRefGoogle Scholar
  17. 17.
    Zankl M (1998) Methods for assessing organ doses using computational models. Radiat Prot Dosim 80:207–212CrossRefGoogle Scholar
  18. 18.
    Kramer R, Zankl M, Williams G et al (1986) The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Part I: The male (Adam) and female (Eva) adult mathematical phantoms. GSF-Bericht S-885, GSF-Forschungszentrum für Umwelt und Gesundheit NeuherbergGoogle Scholar
  19. 19.
    Servomaa A, Rannikko S, Nikitin V et al (1989) A topographically and anatomically unified phantom model for organ dose determination in radiation hygiene. STUK-A87, Finnish Centre for Radiation and Nuclear Safety, HelsinkiGoogle Scholar
  20. 20.
    Petoussi-Henss N, Zankl M, Fill U et al (2002) The GSF family of voxel phantoms. Phys Med Biol 47:89–106PubMedCrossRefGoogle Scholar
  21. 21.
    Zankl M, Veit R, Williams G et al (1988) The construction of computer tomographic phantoms and their application in radiology and radiation protection. Radiat Environ Biophys 27:153–164PubMedCrossRefGoogle Scholar
  22. 22.
    Andreo P (1991) Monte Carlo techniques in medical radiation physics. Phys Med Biol 36:861–920PubMedCrossRefGoogle Scholar
  23. 23.
    Rogers DWO (2006) Fifty years of Monte Carlo simulations for medical physics. Phys Med Biol 51:R287–R301PubMedCrossRefGoogle Scholar
  24. 24.
    Servomaa A, Tapiovaara M (1998) Organ dose calculation in medical X-ray examinations by the program PCXMC. Radiat Prot Dosim 80:213–219CrossRefGoogle Scholar
  25. 25.
    Tapiovaara M, Lakkisto M, Servomaa A (1997) PCXMC. A PC-based Monte Carlo program for calculating patient doses in medical X-ray examinations. Finnish Centre for Radiation and Nuclear Safety, Säteilyturvakeskus (STUK), Report STUK A-139Google Scholar
  26. 26.
    Cristy M (1980) Mathematical phantoms representing children of various ages for use in estimates of internal dose. Oak Ridge Laboratory, NUREG/CR-1159, ORNL/NUREG/TM-367Google Scholar
  27. 27.
    International Commission on Radiological Protection (1975) Report of the task group on reference man: Anatomical, physiological and metabolic characteristics. ICRP Publication 23, Pergamon Press, OxfordGoogle Scholar
  28. 28.
    Birch R, Marshall M (1979) Computation of bremsstrahlung x-ray spectra and comparison with spectra measured with a Ge(Li) detector. Phys Med Biol 24:505–517PubMedCrossRefGoogle Scholar
  29. 29.
    International Commission on Radiological Protection (1991) 1990 recommendations of the International Commission on Radiological Protection, ICRP Publication 60Google Scholar
  30. 30.
    International Commission on Radiological Protection (2007) The 2007 recommendations of the International Commission on Radiological Protection, ICRP Publication 103Google Scholar
  31. 31.
    Boone JM (1988) The three parameter of equivalent spectra as an index of beam quality. Med Phys 15:304–310PubMedCrossRefGoogle Scholar
  32. 32.
    German Bundsärztekammer (2007) Guidelines of the German Bundesärztekammer for quality assurance in diagnostic radiologyGoogle Scholar
  33. 33.
    European Commission (1996) European guidelines on quality criteria for diagnostic radiographic images in paediatrics. EUR 16261 ENGoogle Scholar
  34. 34.
    Drexler G, Panzer W, Petoussi-Henss N et al (1993) Effective dose – how effective for patients? Radiat Environ Biophys 32:209–290PubMedCrossRefGoogle Scholar
  35. 35.
    Staton RJ, Pazik FD, Nipper JC et al (2003) A comparison of newborn stylized and tomographic models for dose assessment in paediatric radiology. Phys Med Biol 48:805–820Google Scholar
  36. 36.
    Bohmann I (1990) Ermittlung der Durchstrahlungsdurchmesser bei Säuglingen, Kindern und Jugendlichen zur Aufstellung von Belichtungswerten in der Röntgendiagnostik und Abschätzung der Organdosiswerte bei typischen Röntgenuntersuchungen. GSF-Bericht 16/90, GSF-Forschungszentrum für Umwelt und Gesundheit NeuherbergGoogle Scholar
  37. 37.
    Lindskoug BA (1992) The Reference Man in diagnostic radiology dosimetry. Br J Radiol 65:431–437Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Clinical Radiology - Paediatric RadiologyLudwig-Maximilians-University of MunichMünchenGermany

Personalised recommendations