Pediatric Radiology

, Volume 43, Issue 9, pp 1190–1195 | Cite as

Temporal and occipital lobe features in children with hypochondroplasia/FGFR3 gene mutation

  • Cristina M. PhilpottEmail author
  • Elysa Widjaja
  • Charles Raybaud
  • Helen M. Branson
  • Peter Kannu
  • Susan Blaser
Original Article



Thanatophoric dysplasia (TD) and hypochondroplasia are both caused by FGFR3 (fibroblast growth factor receptor 3) gene mutations. Temporal lobe dysplasia has been well described in thanatophoric dysplasia; however, only a couple of anecdotal cases of temporal lobe dysplasia in hypochondroplasia have been described.


To define temporal lobe abnormalities in patients with hypochondroplasia, given that they share the same genetic mutation.

Materials and methods

We identified brain imaging studies of nine children with hypochondroplasia. The temporal lobes were assessed on CT and MRI for size and configuration of the temporal horn and aberrant sulcation of the inferior surface of the temporal lobe.


All children had a triangular-shape temporal horn and deep transverse fissures of the inferior temporal lobe surface. Neuroimaging in our cohort revealed enlarged temporal lobes and oversulcation of the mesial temporal and occipital lobes, with abnormal inferomedial orientation of these redundant gyri. Hippocampal dysplasia was also universal.


We confirmed frequent inferomesial temporal and occipital lobe abnormalities in our cohort of children with hypochondroplasia. Murine models with mutant fgfr3 display increased neuroprogenitor proliferation, cortical thickness and surface area in the temporo-occipital cortex. This is thought to result in excessive convolution and likely explains the imaging findings in this patient cohort. (Note that fgfr3 is the same genetic mutation in mice as FGFR3 is in humans.)


FGFR3 gene mutation Hypochondroplasia Mesial temporal lobe Hippocampal dysplasia MRI Children 


Conflicts of interest



  1. 1.
    Vajo Z, Francomano CA, Wilkin DJ (2000) The molecular and genetic basis of fibroblast growth factor receptor 3 disorders: the achondroplasia family of skeletal dysplasias, Muenke craniosynostosis, and Crouzon syndrome with acanthosis nigricans. Endocr Rev 21:23–39PubMedCrossRefGoogle Scholar
  2. 2.
    Francomano CA et al (1999) Hypochondroplasia. In: Pagon RA, Bird TD, Dolan CR (eds) GeneReviews (Internet). University of Washington, Seattle, Updated 2005. Google Scholar
  3. 3.
    Hevner RF (2005) The cerebral cortex malformation in thanatophoric dysplasia: neuropathology and pathogenesis. Acta Neuropathol 110:208–221PubMedCrossRefGoogle Scholar
  4. 4.
    Coulter CL, Leech RW, Brumback RA et al (1991) Cerebral abnormalities in thanatophoric dysplasia. Childs Nerv Syst 7:21–26PubMedCrossRefGoogle Scholar
  5. 5.
    Miller E, Blaser S, Shannon P et al (2009) Brain and bone abnormalities of thanatophoric dwarfism. AJR Am J Roentgenol 192:48-51PubMedCrossRefGoogle Scholar
  6. 6.
    Knisely AS, Ambler MW (1988) Temporal-lobe abnormalities in thanatophoric dysplasia. Pediatr Neurosci 14:169–176PubMedCrossRefGoogle Scholar
  7. 7.
    Kannu P, Hayes IM, Mandelstam S et al (2005) Medial temporal lobe dysgenesis in hypochondroplasia. Am J Med Genet A 138:389–391PubMedGoogle Scholar
  8. 8.
    Grosso S, Farnetani MA, Berardi R et al (2003) Medial temporal lobe dysgenesis in Muenke syndrome and hypochondroplasia. Am J Med Genet A 120A:88–91PubMedCrossRefGoogle Scholar
  9. 9.
    Senapati GM, Levine D, Smith C et al (2010) Frequency and cause of disagreements in imaging diagnosis in children with ventriculomegaly diagnosed prenatally. Ultrasound Obstet Gynecol 36:582–595PubMedCrossRefGoogle Scholar
  10. 10.
    Kannu P, Aftimos S (2007) FGFR3 mutations and medial temporal lobe dysgenesis. J Child Neurol 22:211–213PubMedCrossRefGoogle Scholar
  11. 11.
    Francomano CA (1999) Hypchondroplasia. In: Pagon RA, Bird TD, Dolan CR et al (eds) GeneReviews (Internet). University of Washington, Seattle, Available via Google Scholar
  12. 12.
    Iwata T, Hevner RF (2009) Fibroblast growth factor signaling in development of the cerebral cortex. Dev Growth Differ 51:299–323PubMedCrossRefGoogle Scholar
  13. 13.
    Inglis-Broadgate SL, Thomson RE, Pellicano F et al (2005) FGFR3 regulates brain size by controlling progenitor cell proliferation and apoptosis during embryonic development. Dev Biol 279:73–85PubMedCrossRefGoogle Scholar
  14. 14.
    Thomson RE, Kind PC, Graham NA et al (2009) Fgf receptor 3 activation promotes selective growth and expansion of occipitotemporal cortex. Neural Dev 4:4PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cristina M. Philpott
    • 1
    Email author
  • Elysa Widjaja
    • 2
  • Charles Raybaud
    • 2
  • Helen M. Branson
    • 2
  • Peter Kannu
    • 3
  • Susan Blaser
    • 2
  1. 1.Department of NeuroradiologyThe Hospital for Sick ChildrenTorontoCanada
  2. 2.Diagnostic ImagingThe Hospital for Sick ChildrenTorontoCanada
  3. 3.Division of Clinical and Metabolic GeneticsThe Hospital for Sick ChildrenTorontoCanada

Personalised recommendations