Advertisement

Pediatric Radiology

, Volume 43, Issue 9, pp 1196–1203 | Cite as

Magnetic resonance diffusion tensor imaging metrics in perilesional white matter among children with periventricular nodular gray matter heterotopia

  • Christopher G. FilippiEmail author
  • Aaron W. P. Maxwell
  • Richard Watts
Original Article

Abstract

Background

Despite pharmacological and surgical interventions, some children with periventricular nodular heterotopia (PNH) remain refractory to treatment, which suggests more diffuse pathology potentially involving perilesional white matter.

Objective

The purpose of this study was to evaluate MR diffusion tensor imaging (MRDTI) metrics within perilesional white matter in children with PNH.

Materials and methods

Six children with PNH (four boys; average age 3.2 years, range 2 months to 6 years) were studied with MRDTI at 3 T. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were quantified within perilesional white matter at distances of 5 mm, 10 mm, 15 mm, and 20 mm from focal areas of PNH and compared to location-matched ROIs in six healthy control patients (two boys, average age 3.3 years, range 2–6 years). Statistical significance was set at an overall level of α = 0.05, corrected for multiple comparisons.

Results

Perilesional white matter showed significantly decreased fractional anisotropy and elevated mean and radial diffusivity at all evaluated distances. No significant differences in axial diffusivity were detected at any distance.

Conclusion

PNH is associated with microstructural white matter abnormalities as indicated by abnormal perilesional MRDTI metrics detectable at least 20 mm from visible nodular lesions.

Keywords

Diffusion tensor imaging Magnetic resonance imaging Fractional anisotrophy Radial diffusivity Periventricular nodular heterotopic gray matter Children 

Notes

Conflict of interest

None

References

  1. 1.
    Lee SK, Kim J (2010) Diffusion tensor imaging of heterotopia: changes of fractional anisotropy during radial migration of neurons. Yonsei Med J 51:590–593PubMedCrossRefGoogle Scholar
  2. 2.
    Lee SK, Kim DI, Kim J (2005) Diffusion-tensor MR imaging and fiber tractography: a new method of describing aberrant fiber connections in developmental CNS anomalies. Radiographics 25:53–65PubMedCrossRefGoogle Scholar
  3. 3.
    Christodoulou JA, Walker LM, Del Tufo SN et al (2012) Abnormal structural and functional brain connectivity in gray matter heterotopia. Epilepsia 53:1024–1032PubMedCrossRefGoogle Scholar
  4. 4.
    Pang T, Atefy R, Sheen V (2008) Malformations of cortical development. Neurologist 14:181–191PubMedCrossRefGoogle Scholar
  5. 5.
    Eriksson SH, Rugg-Gunn FJ, Symms MR et al (2001) Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. Brain 124:617–626PubMedCrossRefGoogle Scholar
  6. 6.
    Eriksson SH, Symms MR, Rugg-Gunn FJ et al (2002) Exploring white matter tracts in band heterotopia using diffusion tractography. Ann Neurol 52:327–334PubMedCrossRefGoogle Scholar
  7. 7.
    Gross DW, Bastos A, Beaulieu C (2005) Diffusion tensor imaging abnormalities in focal cortical dysplasia. Can J Neurol Sci 32:477–482PubMedGoogle Scholar
  8. 8.
    Lim CC, Yin H, Loh NK et al (2005) Malformations of cortical development: high-resolution MR and diffusion tensor imaging of fiber tracts at 3 T. AJNR Am J Neuroradiol 26:61–64PubMedGoogle Scholar
  9. 9.
    Widjaja E, Zarei Mahmoodabadi S, Otsubo H et al (2009) Subcortical alterations in tissue microstructure adjacent to focal cortical dysplasia: detection at diffusion-tensor MR imaging by using magnetoencephalographic dipole cluster localization. Radiology 251:206–215PubMedCrossRefGoogle Scholar
  10. 10.
    Lee SK, Kim DI, Mori S et al (2004) Diffusion tensor MRI visualizes decreased subcortical fiber connectivity in focal cortical dysplasia. Neuroimage 22:1826–1829PubMedCrossRefGoogle Scholar
  11. 11.
    Widjaja E, Simao G, Mahmoodabadi SZ et al (2010) Diffusion tensor imaging identifies changes in normal-appearing white matter within the epileptogenic zone in tuberous sclerosis complex. Epilepsy Res 89:246–253PubMedCrossRefGoogle Scholar
  12. 12.
    Makki MI, Chugani DC, Janisse J et al (2007) Characteristics of abnormal diffusivity in normal-appearing white matter investigated with diffusion tensor MR imaging in tuberous sclerosis complex. AJNR Am J Neuroradiol 28:1662–1667PubMedCrossRefGoogle Scholar
  13. 13.
    Garaci FG, Floris R, Bozzao A et al (2004) Increased brain apparent diffusion coefficient in tuberous sclerosis. Radiology 232:461–465PubMedCrossRefGoogle Scholar
  14. 14.
    Simao G, Raybaud C, Chuang S et al (2010) Diffusion tensor imaging of commissural and projection white matter in tuberous sclerosis complex and correlation with tuber load. AJNR Am J Neuroradiol 31:1273–1277PubMedCrossRefGoogle Scholar
  15. 15.
    Stefan H, Nimsky C, Scheler G et al (2007) Periventricular nodular heterotopia: a challenge for epilepsy surgery. Seizure 16:81–86PubMedCrossRefGoogle Scholar
  16. 16.
    Widjaja E, Blaser S, Miller E et al (2007) Evaluation of subcortical white matter and deep white matter tracts in malformations of cortical development. Epilepsia 48:1460–1469PubMedCrossRefGoogle Scholar
  17. 17.
    Kakita A, Hayashi S, Moro F et al (2002) Bilateral periventricular nodular heterotopia due to filamin 1 gene mutation: widespread glomeruloid microvascular anomaly and dysplastic cytoarchitecture in the cerebral cortex. Acta Neuropathol 104:649–657PubMedGoogle Scholar
  18. 18.
    Meroni A, Galli C, Bramerio M et al (2009) Nodular heterotopia: a neuropathological study of 24 patients undergoing surgery for drug-resistant epilepsy. Epilepsia 50:116–124PubMedCrossRefGoogle Scholar
  19. 19.
    Hannan AJ, Servotte S, Katsnelson A et al (1999) Characterization of nodular neuronal heterotopia in children. Brain 122:219–238PubMedCrossRefGoogle Scholar
  20. 20.
    Santi MR, Golden JA (2001) Periventricular heterotopia may result from radial glial fiber disruption. J Neuropathol Exp Neurol 60:856–862PubMedGoogle Scholar
  21. 21.
    Ferland RJ, Batiz LF, Neal J et al (2009) Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia. Hum Mol Genet 18:497–516PubMedCrossRefGoogle Scholar
  22. 22.
    Pinard J, Feydy A, Carlier R et al (2000) Functional MRI in double cortex: functionality of heterotopia. Neurology 54:1531–1533PubMedCrossRefGoogle Scholar
  23. 23.
    Janszky J, Ebner A, Kruse B et al (2003) Functional organization of the brain with malformations of cortical development. Ann Neurol 53:759–767PubMedCrossRefGoogle Scholar
  24. 24.
    Archer JS, Abbott DF, Masterton RA et al (2010) Functional MRI interactions between dysplastic nodules and overlying cortex in periventricular nodular heterotopia. Epilepsy Behav 19:631–634PubMedCrossRefGoogle Scholar
  25. 25.
    Rakhade SN, Jensen FE (2009) Epileptogenesis in the immature brain: emerging mechanisms. Nat Rev Neurol 5:380–391PubMedCrossRefGoogle Scholar
  26. 26.
    Scharfman HE (2007) The neurobiology of epilepsy. Curr Neurol Neurosci Rep 7:348–354PubMedCrossRefGoogle Scholar
  27. 27.
    Dudek FE, Sutula TP (2007) Epileptogenesis in the dentate gyrus: a critical perspective. Prog Brain Res 163:755–773PubMedCrossRefGoogle Scholar
  28. 28.
    Sisodiya SM, Free SL (1997) Disproportion of cerebral surface areas and volumes in cerebral dysgenesis. MRI-based evidence for connectional abnormalities. Brain 120:271–281PubMedCrossRefGoogle Scholar
  29. 29.
    Sisodiya SM (1995) Wiring, dysmorphogenesis and epilepsy: a hypothesis. Seizure 4:169–185PubMedCrossRefGoogle Scholar
  30. 30.
    Cho WH, Seidenwurm D, Barkovich AJ (1999) Adult-onset neurologic dysfunction associated with cortical malformations. AJNR Am J Neuroradiol 20:1037–1043PubMedGoogle Scholar
  31. 31.
    Song SK, Sun SW, Ramsbottom MJ et al (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17:1429–1436PubMedCrossRefGoogle Scholar
  32. 32.
    Song SK, Sun SW, Ju WK et al (2003) Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20:1714–1722PubMedCrossRefGoogle Scholar
  33. 33.
    Kakita A, Kameyama S, Hayashi S et al (2005) Pathologic features of dysplasia and accompanying alterations observed in surgical specimens from patients with intractable epilepsy. J Child Neurol 20:341–350PubMedCrossRefGoogle Scholar
  34. 34.
    Adamsbaum C, Robain O, Cohen PA et al (1998) Focal cortical dysplasia and hemimegalencephaly: histological and neuroimaging correlations. Pediatr Radiol 28:583–590PubMedCrossRefGoogle Scholar
  35. 35.
    Pierpaoli C, Barnett A, Pajevic S et al (2001) Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage 13:1174–1185PubMedCrossRefGoogle Scholar
  36. 36.
    Werring DJ, Toosy AT, Clark CA et al (2000) Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke. J Neurol Neurosurg Psychiatry 69:269–272PubMedCrossRefGoogle Scholar
  37. 37.
    Takahashi M, Hackney DB, Zhang G et al (2002) Magnetic resonance microimaging of intraaxonal water diffusion in live excised lamprey spinal cord. Proc Natl Acad Sci USA 99:16192–16196PubMedCrossRefGoogle Scholar
  38. 38.
    Dimario FJ (2004) Brain abnormalities in tuberous sclerosis complex. J Child Neurol 19:650–657PubMedGoogle Scholar
  39. 39.
    Hirsch JG, Schwenk SM, Rossmanith C et al (2003) Deviations from the diffusion tensor model as revealed by contour plot visualization using high angular resolution diffusion-weighted imaging (HARDI). MAGMA 16:93–102PubMedCrossRefGoogle Scholar
  40. 40.
    Ozarslan E, Mareci TH (2003) Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn Reson Med 50:955–965PubMedCrossRefGoogle Scholar
  41. 41.
    Jones DK (2004) The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med 51:807–815PubMedCrossRefGoogle Scholar
  42. 42.
    Hope T, Westlye LT, Bjørnerud A (2012) The effect of gradient sampling schemes on diffusion metrics derived from probabilistic analysis and tract-based spatial statistics. Magn Reson Imaging 30:402–412PubMedCrossRefGoogle Scholar
  43. 43.
    Hasan KM, Parker DL, Alexander AL (2001) Comparison of gradient encoding schemes for diffusion-tensor MRI. J Magn Reson Imaging 13:769–780PubMedCrossRefGoogle Scholar
  44. 44.
    Wedeen VJ, Hagmann P, Tseng WY et al (2005) Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54:1377–1386PubMedCrossRefGoogle Scholar
  45. 45.
    Yamamoto A, Miki Y, Urayama S et al (2007) Diffusion tensor fiber tractography of the optic radiation: analysis with 6-, 12-, 40-, and 81-directional motion-probing gradients, a preliminary study. AJNR Am J Neuroradiol 28:92–96PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christopher G. Filippi
    • 1
    • 2
    Email author
  • Aaron W. P. Maxwell
    • 3
  • Richard Watts
    • 4
  1. 1.Department of RadiologyFletcher Allen Health CareBurlingtonUSA
  2. 2.Department of RadiologyColumbia University College of Physicians and SurgeonsNew YorkUSA
  3. 3.University of Vermont College of MedicineBurlingtonUSA
  4. 4.Department of RadiologyUniversity of Vermont College of MedicineBurlingtonUSA

Personalised recommendations