Skip to main content
Log in

Effect of vertical positioning on organ dose, image noise and contrast in pediatric chest CT—phantom study

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

CT optimization has a special importance in children. Smaller body size accentuates the importance of patient positioning affecting both radiation dose and image quality.

Objective

To determine the effect of vertical positioning on organ dose, image noise and contrast in pediatric chest CT examination.

Materials and methods

Chest scans of a pediatric 5-year anthropomorphic phantom were performed in different vertical positions (−6 cm to +5.4 cm) with a 64-slice CT scanner. Organ doses were measured with metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters. Image noise and contrast were determined from the CT number histograms corresponding to different tissues.

Results

Significant changes in organ doses resulting from vertical positioning were observed, especially in radiosensitive anterior organs. The breast dose increased up to 16% and the thyroid dose up to 24% in lower positions. The noise was increased up to 45% relative to the centre position in the highest and lowest vertical positions, with a particular increase observed on the anterior and posterior sides, respectively. Off-centering also affected measured image contrast.

Conclusion

Vertical off-centering markedly affects organ doses and measured image-quality parameters in pediatric chest CT examination. Special attention should be given to correct patient centering when preparing patients for CT scans, especially when imaging children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  PubMed  CAS  Google Scholar 

  2. Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505

    Article  PubMed  Google Scholar 

  3. Berrington de González A, Mahesh M, Kim KP et al (2009) Projected cancer risks from computed tomography scans performed in the United States in 2007. Arch Intern Med 169:2071–2077

    Article  PubMed  Google Scholar 

  4. National Research Council (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII – phase 2. National Academic Press, Washington DC, p 15

    Google Scholar 

  5. Børretzen I, Lysdahl KB, Olerud HM (2007) Diagnostic radiology in Norway – trends in examination frequency and collective effective dose. Radiat Prot Dosim 124:339–347

    Article  Google Scholar 

  6. Mettler FA Jr, Huda W, Yoshizumi TT et al (2008) Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248:254–263

    Article  PubMed  Google Scholar 

  7. Hart D, Wall BF (2004) UK population dose from medical X-ray examinations. Eur Radiol 50:285–291

    Article  CAS  Google Scholar 

  8. Bly R, Järvinen H, Korpela MH et al (2011) Estimated collective effective dose to the population from X-ray and nuclear medicine examinations in Finland. Radiat Prot Dosim 147:233–236

    Article  CAS  Google Scholar 

  9. Aroua A, Vader JP, Valley JF et al (2007) Exposure of the Swiss population by radiodiagnostics: 2003 review. Health Phys 92:442–448

    Article  PubMed  CAS  Google Scholar 

  10. Tenkanen-Rautakoski P (2008) Number of radiological examinations in Finland in 2005. STUK-B-STO 62. Radiation and Nuclear Safety Authority, Helsinki. www.stuk.fi/julkaisut/stuk-b/stuk-b-sto62.pdf (in Finnish). Accessed 8 Sept 2008

  11. Nievelstein RAJ, van Dam IM, van der Molen AJ (2010) Multidetector CT in children: current concepts and dose reduction strategies. Pediatr Radiol 40:1324–1344

    Article  PubMed  Google Scholar 

  12. Kalra MK, Maher MM, Toth TL et al (2004) Strategies for CT radiation dose optimization. Radiology 230:619–628

    Article  PubMed  Google Scholar 

  13. Kalender WA, Buchenau S, Deak P et al (2008) Technical approaches to the optimisation of CT. Phys Med 24:71–79

    Article  PubMed  Google Scholar 

  14. Huda W, Vance A (2007) Patient radiation doses from adult and pediatric CT. Am J Roentgenol 188:540–546

    Article  Google Scholar 

  15. Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257:158–166

    Article  PubMed  Google Scholar 

  16. Kalra MK, Maher MM, Toth TL et al (2004) Techniques and applications of automatic tube current modulation for CT. Radiology 233:649–657

    Article  PubMed  Google Scholar 

  17. Deak PD, Langner O, Lell M et al (2009) Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiology 252:140–147

    Article  PubMed  Google Scholar 

  18. Wang J, Duan X, Christner JA et al (2011) Radiation dose reduction to the breast in thoracic CT: comparison of bismuth shielding, organ-based tube current modulation, and use of a globally decreased tube current. Med Phys 38:6084–6092

    Article  PubMed  Google Scholar 

  19. Schueller-Weidekamm C, Schaefer-Prokop CM, Weber M et al (2006) CT angiography of pulmonary arteries to detect pulmonary embolism: improvement of vascular enhancement with low kilovoltage settings. Radiology 241:899–907

    Article  PubMed  Google Scholar 

  20. Sigal-Cinqualbre AB, Hennequin R, Abada HT et al (2004) Low-kilovoltage multi-detector row chest CT in adults: feasibility and effect on image quality and iodine dose. Radiology 231:169–174

    Article  PubMed  Google Scholar 

  21. Matsuoka S, Hunsaker AR, Gill RR et al (2009) Vascular enhancement and image quality of MDCT pulmonary angiography in 400 cases: comparison of standard and low kilovoltage settings. AJR Am J Roentgenol 192:1651–1656

    Article  PubMed  Google Scholar 

  22. Udayasankar UK, Li J, Baumgarten DA et al (2009) Acute abdominal pain: value of non-contrast enhanced ultra-low-dose multi-detector row CT as a substitute for abdominal radiographs. Emerg Radiol 16:61–70

    Article  PubMed  Google Scholar 

  23. Lee SJ, Park SH, Kim AY et al (2011) A prospective comparison of standard-dose CT enterography and 50% reduced-dose CT enterography with and without noise reduction for evaluation Crohn disease. Am J Roentgenol 197:50–57

    Article  Google Scholar 

  24. Gervaise A, Osemont B, Lecocq S et al (2012) CT image quality improvement using adaptive iterative dose reduction with wide-volume acquisition on 320-detector CT. Eur Radiol 22:295–301

    Article  PubMed  Google Scholar 

  25. Winklehner A, Karlo C, Puippe G et al (2011) Raw data-based iterative reconstruction in body CTA: evaluation of radiation dose saving potential. Eur Radiol 21:2521–2526

    Article  PubMed  Google Scholar 

  26. Moscariello A, Takx RAP, Schoepf UJ et al (2011) Coronary CT angiography: image quality, diagnostic accuracy, and potential for radiation dose reduction using a novel iterative reconstruction technique-comparison with traditional filtered back projection. Eur Radiol 21:2130–2138

    Article  PubMed  Google Scholar 

  27. Toth T, Ge Z, Daly MP (2007) The influence of patient centering on CT dose and image noise. Med Phys 34:3093–3101

    Article  PubMed  Google Scholar 

  28. Toth TL (2002) Dose reduction opportunities for CT scanners. Pediatr Radiol 32:261–267

    Article  PubMed  Google Scholar 

  29. Gudjonsdottir J, Svensson JR, Campling S et al (2009) Efficient use of automatic exposure control systems in computed tomography requires correct patient positioning. Acta Radiol 50:1035–1041

    Article  PubMed  CAS  Google Scholar 

  30. Habibzadeh MA, Ay MR, Asl AR et al (2012) Impact of miscentering on patient dose and image noise in x-ray CT imaging: phantom and clinical studies. Phys Med 28:191–199

    Article  PubMed  CAS  Google Scholar 

  31. Li J, Udayasankar UK, Toth TL et al (2007) Automatic patient centering for MDCT: effect on radiation dose. AJR Am J Roentgenol 188:547–552

    Article  PubMed  Google Scholar 

  32. Matsubara K, Koshida K, Ichikawa K et al (2009) Misoperation of CT automatic tube current modulation systems with inappropriate patient centering: phantom studies. AJR Am J Roentgenol 192:862–865

    Article  PubMed  Google Scholar 

  33. ICRP (2007) The 2007 recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP 37:2–4

    Google Scholar 

  34. Boland GWL, Lee MJ, Gazelle SG et al (1998) Characterization of adrenal masses using unenhanced CT: an analysis of the CT literature. AJR Am J Roentgenol 171:201–204

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Medical physicists Timo Kiljunen and Aki Kangasmäki are acknowledged for their help in image processing calculations and Vappu Reijonen for assistance in measurements. This study was supported by the State Subsidy for University Hospitals in Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Touko Kaasalainen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaasalainen, T., Palmu, K., Lampinen, A. et al. Effect of vertical positioning on organ dose, image noise and contrast in pediatric chest CT—phantom study. Pediatr Radiol 43, 673–684 (2013). https://doi.org/10.1007/s00247-012-2611-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-012-2611-z

Keywords

Navigation