Skip to main content

Advertisement

Log in

MRI for the diagnosis of recurrent middle ear cholesteatoma in children—can we optimize the technique? Preliminary study

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Recurrent cholesteatoma after surgical excision occurs frequently in children. Until recently, a surgical second look was mandatory and considered as standard reference. MRI including a delayed T1 sequence after gadolinium injection and diffusion-weighted imaging (DWI) has proved its efficiency but has been evaluated mainly in adults.

Objective

Our purpose was to evaluate the accuracy of DWI to diagnose recurrence of cholesteatoma in children.

Materials and methods

We evaluated prospectively with MRI 20 ears in 18 children who had had surgery for cholesteatoma. We compared DWI and delayed T1-weighted images following gadolinium administration with intraoperative or follow-up findings. We calculated the sensitivity and specificity of each sequence for the diagnosis of recurrent cholesteatoma.

Results

Sensitivity to diagnose recurrent cholesteatoma was 87% for both DWI and delayed post-gadolinium sequences, specificity was 71% and 83%, respectively. Adding both sequences, the sensitivity was 87%, the specificity 100%. There was one false negative probably due to small size recurrence.

Conclusion

In our series, DWI was reliable to diagnose recurrent cholesteatoma in children and allows avoiding surgery when negative. However, because small recurrences less than 5 mm may be missed, follow-up must be prolonged (5 years).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. De Foer B, Vercruysse JP, Pouillon M et al (2007) Value of high-resolution computed tomography and magnetic resonance imaging in the detection of residual cholesteatomas in primary bony obliterated mastoids. Am J Otolaryngol 28:230–234

    Article  PubMed  Google Scholar 

  2. Blaney SP, Tierney P, Oyarazabal M et al (2000) CT scanning in “second look” combined approach tympanoplasty. Rev Laryngol-Otol-Rhinol 121:79–81

    CAS  Google Scholar 

  3. Williams MT, Ayache D, Alberti C et al (2003) Detection of postoperative residual cholesteatoma with delayed contrast-enhanced MR imaging: initial findings. Eur Radiol 13:169–174

    PubMed  Google Scholar 

  4. Aikele P, Kittner T, Offergeld C et al (2003) Diffusion-weighted MR imaging of cholesteatoma in pediatric and adult patients who have undergone middle ear surgery. AJR 181:261–265

    Article  PubMed  CAS  Google Scholar 

  5. Dubrulle F, Souillard R, Chechin D et al (2006) Diffusion-weighted MR imaging sequence in the detection of postoperative recurrent cholesteatoma. Radiology 238:604–610

    Article  PubMed  Google Scholar 

  6. Rajan GP, Ambett R, Wun L et al (2010) Preliminary outcomes of cholesteatoma screening in children using non-echo-planar diffusion-weighted magnetic resonance imaging. Int J Pediatr Otorhinolaryngol 74:297–301

    Article  PubMed  Google Scholar 

  7. Williams MT, Ayache D (2004) Imaging of the postoperative middle ear. Eur Radiol 14:482–495

    Article  PubMed  Google Scholar 

  8. Glas A, Lijmer J, Prins M et al (2003) The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol 56:1129–1135

    Article  PubMed  Google Scholar 

  9. Aarts MC, Rovers MM, van der Veen EL et al (2010) The diagnostic value of diffusion-weighted magnetic resonance imaging in detecting a residual cholesteatoma. Otolaryngol Head Neck Surg 143:12–16

    Article  PubMed  Google Scholar 

  10. Cimsit NC, Cimsit C, Baysal B et al (2010) Diffusion-weighted MR imaging in postoperative follow-up: reliability for detection of recurrent cholesteatoma. Eur J Radiol 74:121–123

    Article  PubMed  Google Scholar 

  11. Kemppainen HO, Puhakka HJ, Laippala PJ et al (1999) Epidemiology and aetiology of middle ear cholesteatoma. Acta Otolaryngol 119:568–572

    Article  PubMed  CAS  Google Scholar 

  12. Spilsbury K, Miller I, Semmens JB et al (2010) Factors associated with developing cholesteatoma: a study of 45,980 children with middle ear disease. Laryngoscope 120:625–630

    Article  PubMed  Google Scholar 

  13. Brackmann DE (1993) Tympanoplasty with mastoidectomy: canal wall up procedures. Am J Otolaryngol 14:380–382

    Google Scholar 

  14. Ayache D, Schmerber S, Lavieille JP et al (2006) Middle ear cholesteatoma. Ann Otolaryngol Chir Cervicofac 123:120–137

    Article  PubMed  CAS  Google Scholar 

  15. Darrouzet V, Duclos JY, Portmann D et al (2000) Preference for the closed technique in the management of cholesteatoma of the middle ear in children: a retrospective study of 215 consecutive patients treated over 10 years. Am J Otolaryngol 21:474–481

    CAS  Google Scholar 

  16. Roger G, Tashjian G, Roelly P et al (1994) Poches de rétraction fixées et cholestéatomes de l’enfant. notre expérience à propos de 199 cas. Ann Otolaryngol Chir Cervicofac 111:103–109

    PubMed  CAS  Google Scholar 

  17. Dhepnorrarat RC, Wood B, Rajan GP (2009) Postoperative non-echo-planar diffusion-weighted magnetic resonance imaging changes after cholesteatoma surgery: implications for cholesteatoma screening. Otol Neurotol 30:54–58

    Article  PubMed  Google Scholar 

  18. Khemani S, Singh A, Lingam RK et al (2011) Imaging of postoperative middle ear cholesteatoma. Clin Radiol 66:760–767

    Article  PubMed  CAS  Google Scholar 

  19. Fitzek C, Mewes T, Fitzek S et al (2002) Diffusion-weighted MRI of cholesteatomas of the petrous bone. J Magn Reson Imaging 15:636–641

    Article  PubMed  Google Scholar 

  20. Provenzale JM, Engelter ST, Petrella JR et al (1999) Use of MR exponential diffusion-weighted images to eradicate T2 “shine-through” effect. AJR 172:537–539

    Article  PubMed  CAS  Google Scholar 

  21. Vercruysse JP, De Foer B, Pouillon M et al (2006) The value of diffusion-weighted MR imaging in the diagnosis of primary acquired and residual cholesteatoma: a surgical verified study of 100 patients. Eur Radiol 16:1461–1467

    Article  PubMed  Google Scholar 

  22. De Foer B, Vercruysse JP, Bernaerts A et al (2007) The value of single-shot turbo spin-echo diffusion-weighted MR imaging in the detection of middle ear cholesteatoma. Neuroradiology 49:841–848

    Article  PubMed  Google Scholar 

  23. Stasolla A, Magliulo G, Lo Mele L et al (2004) Value of echo-planar diffusion-weighted MRI in the detection of secondary and postoperative relapsing/residual cholesteatoma. Radiol Med 107:556–568

    PubMed  Google Scholar 

  24. Jeunen G, Desloovere C, Hermans R et al (2008) The value of magnetic resonance imaging in the diagnosis of residual or recurrent acquired cholesteatoma after canal wall-up tympanoplasty. Otol Neurotol 29:16–18

    Article  PubMed  Google Scholar 

  25. Venail F, Bonafe A, Poirrier V (2008) Comparison of echo-planar diffusion-weighted imaging and delayed postcontrast T1-weighted MR imaging for the detection of residual cholesteatoma. AJNR 29:1363–1368

    Article  PubMed  CAS  Google Scholar 

  26. De Foer B, Vercruysse JP, Bernaerts A et al (2010) Middle ear cholesteatoma: non-echo-planar diffusion-weighted MR imaging versus delayed gadolinium-enhanced T1-weighted MR imaging–value in detection. Radiology 255:866–872

    Article  PubMed  Google Scholar 

  27. Flook E, Izzat S, Ismail A (2011) Cholesteatoma imaging using modified echo-planar diffusion-weighted magnetic resonance imaging. J Laryngol Otol 125:10–12

    Google Scholar 

  28. Huins CT, Singh A, Lingam RK et al (2010) Detecting cholesteatoma with non-echo planar (HASTE) diffusion-weighted magnetic resonance imaging. Otolaryngol Head Neck Surg 143:141–146

    Article  PubMed  Google Scholar 

  29. Jindal M, Doshi J, Srivastav M et al (2010) Diffusion-weighted magnetic resonance imaging in the management of cholesteatoma. Eur Arch Otorhinolaryngol 267:181–185

    Article  PubMed  Google Scholar 

  30. Pizzini FB, Barbieri F, Beltramello A et al (2010) HASTE diffusion-weighted 3-Tesla magnetic resonance imaging in the diagnosis of primary and relapsing cholesteatoma. Otol Neurotol 31:596–602

    PubMed  Google Scholar 

  31. Khemani S, Lingam RK, Kalan A et al (2011) The value of non-echo planar HASTE diffusion-weighted MR imaging in the detection, localisation and prediction of extent of postoperative cholesteatoma. Clin Otolaryngol 36:306–312

    Article  PubMed  CAS  Google Scholar 

  32. De Foer B, Vercruysse JP, Bernaerts A et al (2008) Detection of postoperative residual cholesteatoma with non-echo-planar diffusion-weighted magnetic resonance imaging. Otol Neurotol 29:513–517

    Article  PubMed  Google Scholar 

  33. Thiriat S, Riehm S, Kremer S et al (2009) Apparent diffusion coefficient values of middle ear cholesteatoma differ from abscess and cholesteatoma admixed infection. AJNR 30:1123–1126

    Article  PubMed  CAS  Google Scholar 

  34. Nagai N, Tono T, Matsuda K et al (2007) Value of diffusion-weighted MR imaging in the detection of middle ear cholesteatoma. Nippon Jibiinkoka Gakkai Kaiho 110:707–712

    Article  PubMed  Google Scholar 

  35. Plouin-Gaudon I, Bossard D, Fuchsmann C et al (2010) Diffusion-weighted MR imaging for evaluation of pediatric recurrent cholesteatomas. Int J Pediatr Otorhinolaryngol 74:22–26

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Geoffray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geoffray, A., Guesmi, M., Nebbia, J.F. et al. MRI for the diagnosis of recurrent middle ear cholesteatoma in children—can we optimize the technique? Preliminary study. Pediatr Radiol 43, 464–473 (2013). https://doi.org/10.1007/s00247-012-2502-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-012-2502-3

Keywords

Navigation