Skip to main content
Log in

Pediatric brain injury: can DTI scalars predict functional outcome?

  • Minisymposium
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Diffusion imaging has made significant inroads into the clinical diagnosis of a variety of diseases by inferring changes in microstructure, namely cell membranes, myelin sheath and other structures that inhibit water diffusion. This review discusses recent progress in the use of diffusion parameters in predicting functional outcome. Studies in the literature using only scalar parameters from diffusion measurements, such as apparent diffusion coefficient (ADC) and fractional anisotropy (FA), are summarized. Other more complex mathematical models and post-processing uses are also discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rutherford MA, Cowan FM, Manzur AY et al (1991) MR imaging of anisotropically restricted diffusion in the brain of neonates and infants. J Comput Assist Tomogr 15:188–198

    Article  PubMed  CAS  Google Scholar 

  2. Barkovich AJ, Westmark KD, Bedi HS et al (2001) Proton spectroscopy and diffusion imaging on the first day of life after perinatal asphyxia: preliminary report. AJNR 22:1786–1794

    PubMed  CAS  Google Scholar 

  3. Boichot C, Walker PM, Durand C et al (2006) Term neonate prognoses after perinatal asphyxia: contributions of MR imaging, MR spectroscopy, relaxation times, and apparent diffusion coefficients. Radiology 239:839–848

    Article  PubMed  Google Scholar 

  4. Hunt RW, Neil JJ, Coleman LT et al (2004) Apparent diffusion coefficient in the posterior limb of the internal capsule predicts outcome after perinatal asphyxia. Pediatrics 114:999–1003

    Article  PubMed  Google Scholar 

  5. Vermeulen RJ, Fetter WP, Hendrikx L et al (2003) Diffusion-weighted MRI in severe neonatal hypoxic ischaemia: the white cerebrum. Neuropediatrics 34:72–76

    Article  PubMed  CAS  Google Scholar 

  6. Zarifi MK, Astrakas LG, Poussaint TY et al (2002) Prediction of adverse outcome with cerebral lactate level and apparent diffusion coefficient in infants with perinatal asphyxia. Radiology 225:859–870

    Article  PubMed  CAS  Google Scholar 

  7. Soul JS, Robertson RL, Tzika AA et al (2001) Time course of changes in diffusion-weighted magnetic resonance imaging in a case of neonatal encephalopathy with defined onset and duration of hypoxic-ischemic insult. Pediatrics 108:1211–1214

    Article  PubMed  CAS  Google Scholar 

  8. McKinstry RC, Miller JH, Snyder AZ et al (2002) A prospective, longitudinal diffusion tensor imaging study of brain injury in newborns. Neurology 59:824–833

    Article  PubMed  CAS  Google Scholar 

  9. de Vries LS, Jongmans MJ (2010) Long-term outcome after neonatal hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 95:F220–F224

    Article  PubMed  Google Scholar 

  10. Barkovich AJ, Miller SP, Bartha A et al (2006) MR imaging, MR spectroscopy, and diffusion tensor imaging of sequential studies in neonates with encephalopathy. AJNR 27:533–547

    PubMed  CAS  Google Scholar 

  11. Vermeulen RJ, van Schie PE, Hendrikx L et al (2008) Diffusion-weighted and conventional MR imaging in neonatal hypoxic ischemia: two-year follow-up study. Radiology 249:631–639

    Article  PubMed  Google Scholar 

  12. Takenouchi T, Heier LA, Engel M et al (2010) Restricted diffusion in the corpus callosum in hypoxic-ischemic encephalopathy. Pediatr Neurol 43:190–196

    Article  PubMed  Google Scholar 

  13. Alderliesten T, de Vries LS, Benders MJ et al (2011) MR imaging and outcome of term neonates with perinatal asphyxia: value of diffusion-weighted MR imaging and (1)H MR spectroscopy. Radiology 261:235–242

    Article  PubMed  Google Scholar 

  14. Boichot C, Mejean N, Gouyon JB et al (2011) Biphasic time course of brain water ADC observed during the first month of life in term neonates with severe perinatal asphyxia is indicative of poor outcome at 3 years. Magn Reson Imaging 29:194–201

    Article  PubMed  Google Scholar 

  15. Liauw L, van Wezel-Meijler G, Veen S et al (2009) Do apparent diffusion coefficient measurements predict outcome in children with neonatal hypoxic-ischemic encephalopathy? AJNR 30:264–270

    Article  PubMed  CAS  Google Scholar 

  16. Sarnat HB, Sarnat MS (1976) Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch Neurol 33:696–705

    Article  PubMed  CAS  Google Scholar 

  17. Khong PL, Tse C, Wong IY et al (2004) Diffusion-weighted imaging and proton magnetic resonance spectroscopy in perinatal hypoxic-ischemic encephalopathy: association with neuromotor outcome at 18 months of age. J Child Neurol 19:872–881

    PubMed  Google Scholar 

  18. Suskauer SJ, Huisman TA (2009) Neuroimaging in pediatric traumatic brain injury: current and future predictors of functional outcome. Dev Disabil Res Rev 15:117–123

    Article  PubMed  Google Scholar 

  19. Hergan K, Schaefer PW, Sorensen AG et al (2002) Diffusion-weighted MRI in diffuse axonal injury of the brain. Eur Radiol 12:2536–2541

    PubMed  CAS  Google Scholar 

  20. Galloway NR, Tong KA, Ashwal S et al (2008) Diffusion-weighted imaging improves outcome prediction in pediatric traumatic brain injury. J Neurotrauma 25:1153–1162

    Article  PubMed  Google Scholar 

  21. Tong KA, Ashwal S, Holshouser BA et al (2003) Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. Radiology 227:332–339

    Article  PubMed  Google Scholar 

  22. Babikian T, Tong KA, Galloway NR et al (2009) Diffusion-weighted imaging predicts cognition in pediatric brain injury. Pediatr Neurol 41:406–412

    Article  PubMed  Google Scholar 

  23. Oni MB, Wilde EA, Bigler ED et al (2010) Diffusion tensor imaging analysis of frontal lobes in pediatric traumatic brain injury. J Child Neurol 25:976–984

    Article  PubMed  Google Scholar 

  24. Inglese M, Makani S, Johnson G et al (2005) Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. J Neurosurg 103:298–303

    Article  PubMed  Google Scholar 

  25. Salmond CH, Menon DK, Chatfield DA et al (2006) Diffusion tensor imaging in chronic head injury survivors: correlations with learning and memory indices. NeuroImage 29:117–124

    Article  PubMed  CAS  Google Scholar 

  26. Tasker RC, Salmond CH, Westland AG et al (2005) Head circumference and brain and hippocampal volume after severe traumatic brain injury in childhood. Pediatr Res 58:302–308

    Article  PubMed  Google Scholar 

  27. Kurowski B, Wade SL, Cecil KM et al (2009) Correlation of diffusion tensor imaging with executive function measures after early childhood traumatic brain injury. J Pediatr Rehab Med 2:273–283

    Google Scholar 

  28. Wozniak JR, Krach L, Ward E et al (2007) Neurocognitive and neuroimaging correlates of pediatric traumatic brain injury: a diffusion tensor imaging (DTI) study. Arch Clin Neuropsychol 22:555–568

    Article  PubMed  Google Scholar 

  29. Levin HS, Wilde EA, Chu Z et al (2008) Diffusion tensor imaging in relation to cognitive and functional outcome of traumatic brain injury in children. J Head Trauma Rehabil 23:197–208

    Article  PubMed  Google Scholar 

  30. Ewing-Cobbs L, Hasan KM, Prasad MR et al (2006) Corpus callosum diffusion anisotropy correlates with neuropsychological outcomes in twins disconcordant for traumatic brain injury. AJNR 27:879–881

    PubMed  CAS  Google Scholar 

  31. Ewing-Cobbs L, Prasad MR, Swank P et al (2008) Arrested development and disrupted callosal microstructure following pediatric traumatic brain injury: relation to neurobehavioral outcomes. NeuroImage 42:1305–1315

    Article  PubMed  Google Scholar 

  32. Wu TC, Wilde EA, Bigler ED et al (2010) Longitudinal changes in the corpus callosum following pediatric traumatic brain injury. Dev Neurosci 32:361–373

    PubMed  CAS  Google Scholar 

  33. Mukherjee P, Miller JH, Shimony JS et al (2001) Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. Radiology 221:349–358

    Article  PubMed  CAS  Google Scholar 

  34. Miller SP, Vigneron DB, Henry RG et al (2002) Serial quantitative diffusion tensor MRI of the premature brain: development in newborns with and without injury. J Magn Reson Imaging 16:621–632

    Article  PubMed  Google Scholar 

  35. Neil J, Miller J, Mukherjee P et al (2002) Diffusion tensor imaging of normal and injured developing human brain—a technical review. NMR Biomed 15:543–552

    Article  PubMed  CAS  Google Scholar 

  36. Mukherjee P, Miller JH, Shimony JS et al (2002) Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR 23:1445–1456

    PubMed  Google Scholar 

  37. Ment LR, Hirtz D, Huppi PS (2009) Imaging biomarkers of outcome in the developing preterm brain. Lancet Neurol 8:1042–1055

    Article  PubMed  Google Scholar 

  38. Drobyshevsky A, Bregman J, Storey P et al (2007) Serial diffusion tensor imaging detects white matter changes that correlate with motor outcome in premature infants. Dev Neurosci 29:289–301

    Article  PubMed  CAS  Google Scholar 

  39. Mullen KM, Vohr BR, Katz KH et al (2011) Preterm birth results in alterations in neural connectivity at age 16 years. NeuroImage 54:2563–2570

    Article  PubMed  Google Scholar 

  40. Tam EW, Ferriero DM, Xu D et al (2009) Cerebellar development in the preterm neonate: effect of supratentorial brain injury. Pediatr Res 66:102–106

    Article  PubMed  Google Scholar 

  41. Tam EW, Miller SP, Studholme C et al (2011) Differential effects of intraventricular hemorrhage and white matter injury on preterm cerebellar growth. J Pediatr 158:366–371

    Article  PubMed  Google Scholar 

  42. Izawa J, Criscimagna-Hemminger SE, Shadmehr R (2012) Cerebellar contributions to reach adaptation and learning sensory consequences of action. J Neurosci 32:4230–4239

    Article  PubMed  CAS  Google Scholar 

  43. Law N, Bouffet E, Laughlin S et al (2011) Cerebello-thalamo-cerebral connections in pediatric brain tumor patients: impact on working memory. NeuroImage 56:2238–2248

    Article  PubMed  Google Scholar 

  44. Kuker W, Mohrle S, Mader I et al (2004) MRI for the management of neonatal cerebral infarctions: importance of timing. Childs Nerv Syst 20:742–748

    PubMed  CAS  Google Scholar 

  45. Domi T, de Veber G, Shroff M et al (2009) Corticospinal tract Pre-wallerian degeneration a novel outcome predictor for pediatric stroke on acute MRI. Stroke 40:780–787

    Article  PubMed  Google Scholar 

  46. Kirton A, Shroff M, Visvanathan T et al (2007) Quantified corticospinal tract diffusion restriction predicts neonatal stroke outcome. Stroke 38:974–980

    Article  PubMed  Google Scholar 

  47. De Vries LS, Van der Grond J, Van Haastert IC et al (2005) Prediction of outcome in new-born infants with arterial ischaemic stroke using diffusion-weighted magnetic resonance imaging. Neuropediatrics 36:12–20

    Article  PubMed  Google Scholar 

  48. van der Aa NE, Leemans A, Northington FJ et al (2011) Does diffusion tensor imaging-based tractography at 3 months of Age contribute to the prediction of motor outcome after perinatal arterial ischemic stroke? Stroke 42:3410–3414

    Article  PubMed  Google Scholar 

  49. Tymofiyeva O, Hess CP, Ziv E et al (2012) Towards the “baby connectome”: mapping the structural connectivity of the newborn brain. PLoS One 7:e31029

    Article  PubMed  CAS  Google Scholar 

  50. Fransson P, Aden U, Blennow M et al (2011) The functional architecture of the infant brain as revealed by resting-state FMRI. Cereb Cortex 21:145–154

    Article  PubMed  Google Scholar 

  51. Kalpakidou AK, Allin MP, Walshe M et al (2012) Neonatal brain injury and neuroanatomy of memory processing following very preterm birth in adulthood: an fMRI study. PLoS One 7:e34858

    Article  PubMed  CAS  Google Scholar 

  52. Miller SP, McQuillen PS, Hamrick S et al (2007) Abnormal brain development in newborns with congenital heart disease. N Engl J Med 357:1928–1938

    Article  PubMed  CAS  Google Scholar 

  53. Xu D, Bonifacio SL, Charlton NN et al (2011) MR spectroscopy of normative premature newborns. J Magn Reson Imaging 33:306–311

    Article  PubMed  Google Scholar 

  54. Rosso C, Colliot O, Pires C et al (2011) Early ADC changes in motor structurespredict outcome of acute stroke better than lesion volume. J Neuroradiol 38:105–112

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge NIH funding R01NS046432, R01EB009756, and P50NS035902, and Dr. Christopher P Hess for images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duan Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, D., Mukherjee, P. & Barkovich, A.J. Pediatric brain injury: can DTI scalars predict functional outcome?. Pediatr Radiol 43, 55–59 (2013). https://doi.org/10.1007/s00247-012-2481-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-012-2481-4

Keywords

Navigation