Skip to main content
Log in

Optimization of myocardial nulling in pediatric cardiac MRI

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Current protocols to determine optimal nulling time in late enhancement imaging using adult techniques may not apply to children.

Objective

To determine the optimal nulling time in anesthetised children, with the hypothesis that this occurs earlier than in adults.

Materials and methods

Sedated cardiac MRI was performed in 12 children (median age: 12 months, range: 1–60 months). After gadolinium administration, scout images at 2, 3, 4 and 10 min and phase sensitive inversion recovery (PSIR) images from 5 to 10 min were obtained. Signal-to-noise ratio (SNR) and inversion time (TI) were determined. Quality of nulling was assessed according to a grading score by three observers. Data was analysed using linear regression, Kruskal-Wallis and quadratic-weighted kappa statistics.

Results

One child with a cardiomyopathy had late enhancement. Good agreement in nulling occurred for scout images at 2 (κ = 0.69) and 3 (κ = 0.66) min and moderate agreement at 4 min (κ = 0.57). Agreement of PSIR images was moderate at 7 min (κ = 0.44) and poor-fair at other times. There were significant correlations between TI and scout time (r = 0.61, P < 0.0001), and SNR and kappa (r = 0.22, P = 0.017).

Conclusion

Scout images at 2–4 min can be used to determine the TI with little variability. Image quality for PSIR images was highest at 7 min and SNR optimal at 7–9 min. TI increases with time and should be adjusted frequently during imaging. Thus, nulling times in children differ from nulling times in adults when using standard adult techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Flacke S, Allen JS, Chia JM et al (2003) Characterization of viable and nonviable myocardium at MR imaging: comparison of gadolinium-based extracellular and blood pool contrast materials versus manganese-based contrast materials in a rat myocardial infarction model. Radiology 226:731–738

    Article  PubMed  Google Scholar 

  2. Mahrholdt H, Wagner A, Judd RM et al (2002) Assessment of myocardial viability by cardiovascular magnetic resonance imaging. Eur Heart J 23:602–619

    Article  PubMed  CAS  Google Scholar 

  3. Elgeti T, Abdel-Aty H, Wagner M et al (2007) Assessment of late gadolinium enhancement in nonischemic cardiomyopathy: comparison of a fast Phase-Sensitive Inversion Recovery Sequence (PSIR) and a conventional segmented 2D gradient echo recall (GRE) sequence—preliminary finding. Invest Radiol 42:671–675

    Article  PubMed  Google Scholar 

  4. Ho CY, Lopez B, Coelho-Filho OR et al (2010) Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med 363:552–563

    Article  PubMed  CAS  Google Scholar 

  5. Huber AM, Schoenberg SO, Hayes C et al (2005) Phase-sensitive inversion-recovery MR imaging in the detection of myocardial infarction. Radiology 237:854–860

    Article  PubMed  Google Scholar 

  6. Kellman P, Arai AE, McVeigh ER et al (2002) Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 47:372–383

    Article  PubMed  Google Scholar 

  7. Setser RM, Chung YC, Weaver JA et al (2005) Effect of inversion time on delayed-enhancement magnetic resonance imaging with and without phase-sensitive reconstruction. J Magn Reson Imaging 21:650–655

    Article  PubMed  Google Scholar 

  8. Petersen SE, Mohrs OK, Horstick G et al (2004) Influence of contrast agent dose and image acquisition timing on the quantitative determination of nonviable myocardial tissue using delayed contrast-enhanced magnetic resonance imaging. J Cardiovasc Magn Reson 6:541–548

    Article  PubMed  Google Scholar 

  9. Simonetti OP, Cook S (2006) Technical aspects of pediatric CMR. J Cardiovasc Magn Reson 8:581–593

    Article  PubMed  Google Scholar 

  10. Wald RM, Haber I, Wald R et al (2009) Effects of regional dysfunction and late gadolinium enhancement on global right ventricular function and exercise capacity in patients with repaired tetralogy of Fallot. Circulation 119:1370–1377

    Article  PubMed  Google Scholar 

  11. Secinaro A, Ntsinjana H, Tann O et al (2011) Cardiovascular magnetic resonance findings in repaired anomalous left coronary artery to pulmonary artery connection (ALCAPA). J Cardiovasc Magn Reson 13:27

    Article  PubMed  Google Scholar 

  12. Voges I, Jerosch-Herold M, Hedderich J et al (2010) Maladaptive aortic properties in children after palliation of hypoplastic left heart syndrome assessed by cardiovascular magnetic resonance imaging. Circulation 122:1068–1076

    Article  PubMed  Google Scholar 

  13. Bartelink IH, Rademaker CM, Schobben AF et al (2006) Guidelines on paediatric dosing on the basis of developmental physiology and pharmacokinetic considerations. Clin Pharmacokinet 45:1077–1097

    Article  PubMed  CAS  Google Scholar 

  14. Cummings KW, Bhalla S, Javidan-Nejad C et al (2009) A pattern-based approach to assessment of delayed enhancement in nonischemic cardiomyopathy at MR imaging. Radiographics 29:89–103

    Article  PubMed  Google Scholar 

  15. Kim RJ, Shah DJ, Judd RM (2003) How we perform delayed enhancement imaging. J Cardiovasc Magn Reson 5:505–514

    Article  PubMed  Google Scholar 

  16. Constantinides CD, Atalar E, McVeigh ER (1997) Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn Reson Med 38:852–857

    Article  PubMed  CAS  Google Scholar 

  17. Gupta A, Lee VS, Chung YC et al (2004) Myocardial infarction: optimization of inversion times at delayed contrast-enhanced MR imaging. Radiology 233:921–926

    Article  PubMed  Google Scholar 

  18. Kim RJ, Fieno DS, Parrish TB et al (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002

    PubMed  CAS  Google Scholar 

  19. Oshinski JN, Yang Z, Jones JR et al (2001) Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation 104:2838–2842

    Article  PubMed  CAS  Google Scholar 

  20. Eichstaedt HW, Felix R, Danne O et al (1989) Imaging of acute myocardial infarction by magnetic resonance tomography (MRT) using the paramagnetic relaxation substance gadolinium-DTPA. Cardiovasc Drugs Ther 3:779–788

    Article  PubMed  CAS  Google Scholar 

  21. Schwitter J, Saeed M, Wendland MF et al (1997) Influence of severity of myocardial injury on distribution of macromolecules: extravascular versus intravascular gadolinium-based magnetic resonance contrast agents. J Am Coll Cardiol 30:1086–1094

    Article  PubMed  CAS  Google Scholar 

  22. Baker JF, Kratz LC, Stevens GR et al (2004) Pharmacokinetics and safety of the MRI contrast agent gadoversetamide injection (Optimark) in healthy pediatric subjects. Invest Radiol 39:334–339

    Article  PubMed  CAS  Google Scholar 

  23. Dulce MC, Duerinckx AJ, Hartiala J et al (1993) MR imaging of the myocardium using nonionic contrast medium: signal-intensity changes in patients with subacute myocardial infarction. AJR 160:963–970

    PubMed  CAS  Google Scholar 

  24. Kim RJ, Chen EL, Lima JA et al (1996) Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 94:3318–3326

    PubMed  CAS  Google Scholar 

  25. Klein C, Nekolla SG, Balbach T et al (2004) The influence of myocardial blood flow and volume of distribution on late Gd-DTPA kinetics in ischemic heart failure. J Magn Reson Imaging 20:588–593

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edythe B. Tham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tham, E.B., Hung, R.W., Myers, K.A. et al. Optimization of myocardial nulling in pediatric cardiac MRI. Pediatr Radiol 42, 431–439 (2012). https://doi.org/10.1007/s00247-011-2276-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-011-2276-z

Keywords

Navigation