Skip to main content

Advertisement

Log in

Fetal and neonatal bone health: update on bone growth and manifestations in health and disease

  • Advances in Fetal and Neonatal Imaging
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

The neonatal period is classically described as the first 28 days of life, but owing to the fact that changes in skeletal tissue occur at a somewhat slower pace than those of other organ systems, events of the first few months are considered herein. Neonatal bone health is a problem of growing interest and concern because of the increasing recognition of its impact upon childhood, adolescent and even adult bone health. Osteoporosis in adulthood often has its roots in childhood and some forms may be prevented by proper attention to neonatal and childhood bone health. The premature infant likely suffers lifelong decreased bone mineral density as a result of its early birth and lack of adequate mineral stores that are typically present in full-term infants. Adequate embryogenesis, growth and development of the skeletal system are multifactorial and under the influence of a host of genes, growth factors and enzymes. The evaluation of skeletal dysplasias and their recognition are beyond the scope of this paper and will not be considered in this discussion. Here the focus will be on the adequacy of mineralization and metabolic aspects of the growth and development of the fetal and neonatal skeleton, the effect of birth, both preterm and term, maternal illness and health as well as infant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Wagner CL, Greer FR, Academy A, American Academy of Pediatrics Section on Breastfeeding et al (2008) Prevention of rickets and vitamin D deficiency in infants, children and adolescents. Pediatrics 122:1142–1152

    Article  PubMed  Google Scholar 

  2. Hovi P, Andersson S, Jarvenpaa A-L et al (2009) Decreased bone mineral density in adults born with very low birth weight: a cohort study. PLOS Med 6(8):e1000135

    Article  PubMed  Google Scholar 

  3. Griscom NT, Jaramillo D (2000) “Osteoporosis”, “osteomalacia”, and “osteopenia”: proper terminology in childhood. AJR 175:267–268

    Google Scholar 

  4. Brickley M, Mays S, Ives R (2010) Evaluation and interpretation of residual rickets deformities in adults. Int J Osteoarchaeol 20:54–66

    Google Scholar 

  5. Hirsch M, Mogle P, Barkli Y (1976) Neonatal scurvy: a report of a case. Pediatr Radiol 4:251–253

    Article  PubMed  CAS  Google Scholar 

  6. Levy J, Berdon WE, Abramson SJ (1984) Epiphyseal separation simulating pyarthrosis, secondary to copper deficiency, in an infant receiving total parenteral nutrition. Br J Radiol 57:636–638

    Article  PubMed  CAS  Google Scholar 

  7. Christian C, Feldman K (2010) Seeing is believing: the 2nd annual visual diagnosis session. 10th Annual Helfer Society Meeting 19 April 2010, Philadelphia, Pa. Within this: Marquardt M, Done S, Feldman K. Beaks from the blue: Copper deficient metabolic bone disease

  8. Schmidt H, Herwig J, Greinacher I (1991) The skeletal changes in premature infants with copper deficiency. Rofo 155:38–42

    Article  PubMed  CAS  Google Scholar 

  9. Oestreich AE (2003) The acrophysis: a unifying concept for enchondral bone growth and its disorders. I. Normal growth. Skelet Radiol 32:121–127

    Article  Google Scholar 

  10. Howells G, Palmer PES, St. John-Brooks WH (1954) Six cases of infantile scurvy. Br Med J 2:1143–1145

    Article  PubMed  CAS  Google Scholar 

  11. Kipp DE, McElvain M, Kimmel DB et al (1996) Scurvy results in decreased collagen synthesis and bone density in the guinea pig animal model. Bone 18:281–288

    Article  PubMed  CAS  Google Scholar 

  12. Brill P, Baker DH, Ewing ML (1973) Bone-within-bone in the neonatal spine. Stress change or normal development. Radiology 108:363–366

    PubMed  CAS  Google Scholar 

  13. Ryan S, Congdon PJ, James J et al (1988) Mineral accretion in the human fetus. Arc Dis Child 63:799–808

    Article  CAS  Google Scholar 

  14. Peterlik M (2010) Bone-mineral homeostasis and associated pathologies. In: Bronner F, Farach-Carson MC, Roach HI (eds) Bone and development. Springer, London, pp 251–266

    Chapter  Google Scholar 

  15. Hewison M, Adams JS (2010) Vitamin D insufficiency and skeletal development in utero. J Bone Miner Res 25:11–13

    Article  PubMed  CAS  Google Scholar 

  16. Mahon P, Harvey N, Crozier S et al (2010) Low maternal Vitamin D status and fetal bone development: cohort study. J Bone Miner Res 25:14–19

    Article  PubMed  CAS  Google Scholar 

  17. Viljakainen HT, Saarnio E, Hytinantti T et al (2010) Maternal vitamin D status determines bone variables in the newborn. J Clin Endocrinol Metab 95:1749–1757

    Article  PubMed  CAS  Google Scholar 

  18. Mulligan ML, Felton SK, Riek AE et al (2010) Implications of vitamin D deficiency in pregnancy and lactation. Am J Obstet Gynecol 202:429–430

    Article  PubMed  Google Scholar 

  19. Bodner LM, Simhan HN, Powers RW et al (2007) High prevalence of vitamin D insufficiency in black and white pregnant women residing in the Northeast United States and their neonates. J Nutr 137:447–452

    Google Scholar 

  20. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281

    Article  PubMed  CAS  Google Scholar 

  21. Fuleihan GE (2009) Vitamin D deficiency in the Middle East and its health consequences for children and adults. Clinic Rev Bone Miner Metab 7:77–93

    Article  Google Scholar 

  22. Mithal A, Wahl A, Bonjour JP et al (2009) Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int 20:1807–1820

    Article  PubMed  CAS  Google Scholar 

  23. Hintzpeter B, Scheidt-Nave C, Muller MJ et al (2008) Higher prevalence of vitamin D deficiency is associated with immigrant background among children and adolescents in Germany. J Nutr 138:1482–1490

    PubMed  CAS  Google Scholar 

  24. Kovacs CS (2008) Fetal calcium metabolism. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 7th edn. ASBMR, Washington, D.C., pp 108–111

    Chapter  Google Scholar 

  25. Kovacs CS, Kronenberg HM (1997) Maternal-fetal calcium and bone metabolism during pregnancy, puerperium, and lactation. Endocr Rev 18:832–872

    Article  PubMed  CAS  Google Scholar 

  26. Mitchell DM, Juppner H (2010) Regulation of calcium homeostasis and bone metabolism in the fetus and neonate. Curr Opin Endocrinol Diabetes Obes 17:25–30

    PubMed  CAS  Google Scholar 

  27. Kovacs CS, Kronenberg HM (2008) Pregnancy and lactation. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 7th edn. ASBMR, Washington, D.C., pp 90–95

    Chapter  Google Scholar 

  28. Anderson HC, Shapiro IM (2010) The epiphyseal growth plate. In: Bronner F, Farach-Carson MC, Roach HI (eds) Bone and development. Springer, London, pp 39–64

    Chapter  Google Scholar 

  29. Marie PJ (2010) FGF/FGFR signaling in skeletal dysplasias. In: Bronner F, Farach-Carson MC, Roach HI (eds) Bone and development. Springer, London, pp 93–105

    Chapter  Google Scholar 

  30. Greer FR (1994) Osteopenia of prematurity. Annu Rev Nutr 14:169–185

    Article  PubMed  CAS  Google Scholar 

  31. Rauch F (2008) Fetal and neonatal bone development. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 7th edn. ASBMR, Washington, D.C., pp 72–74

    Google Scholar 

  32. Khadilkar VV, Khadilkar AV, Joshi SS (2007) Bone disease in preterm. Indian J Pediatr 74:945–946

    Article  PubMed  CAS  Google Scholar 

  33. Cakir M, Mungan I, Karakas T et al (2008) Bone turnover markers in premature infants. Marmara Med J 21:152–158

    Google Scholar 

  34. Zuscik MJ, O’Keefe RJ (2008) Skeletal healing. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 7th edn. ASBMR, Washington, D.C., pp 61–64

    Chapter  Google Scholar 

  35. Bozzetti V, Tagliabue P (2009) Metabolic bone disease in preterm newborn: an update on nutritional issues. Ital J Pediatr 35:20–28

    Article  PubMed  Google Scholar 

  36. Rauch F, Schoenau E (2002) Skeletal development in premature infants: a review of bone physiology beyond nutritional aspects. Arch Dis Child Fetal Neonatal Ed 86:F82–F85

    Article  PubMed  CAS  Google Scholar 

  37. Toth P, Erdei G, Vasarhelyi B (2003) Potential consequences of the sudden postnatal drop of estrogen levels in preterm neonates. Orv Hetil 144:1719–1724

    PubMed  Google Scholar 

  38. Russell JGB, Hill LF (1974) True fetal rickets. Br J Radiol 47:732–734

    Article  PubMed  CAS  Google Scholar 

  39. Pawley N, Bishop NJ (2004) Prenatal and infant predictors of bone health: the influence of vitamin D. Am J Clin Nutr 80:1748s–1751s

    PubMed  CAS  Google Scholar 

  40. Slovis TL, Chapman S (2008) Evaluating the data concerning vitamin D insufficiency/deficiency and child abuse. Pediatr Radiol 38:1221–1224

    Article  PubMed  Google Scholar 

  41. Strouse PJ (2009) Vitamin D deficiency vs. child abuse: what do we know now and where do we go? Pediatr Radiol 39:1033

    Article  PubMed  Google Scholar 

  42. Schilling S, Wood JN, Levine MA et al (2011) Vitamin D status in abused and nonabused children younger than 2 years old with fractures. Pediatrics 127:835–841

    Article  PubMed  Google Scholar 

  43. Bishop N, Sprigg A, Dalton A (2007) Unexplained fractures in infancy: looking for fragile bones. Arch Dis Child 92:251–256

    Article  PubMed  Google Scholar 

  44. Chapman T, Sugar N, Done S et al (2010) Fractures in infants and toddlers with rickets. Pediatr Radiol 40:1184–1189

    Article  PubMed  Google Scholar 

  45. Biyyam DR, Done S (2009) Osteopetrorickets: infantile malignant osteopetrosis paradoxically complicated by rickets. Pediatr Radiol 40:782

    Article  PubMed  Google Scholar 

  46. van Rijn RR, Bilo RAC, Robben SGF (2009) Birth-related mid-posterior rib fractures in neonates: a report of three cases (and a possible fourth case) and a review of the literature. Pediatr Radiol 39:30–34

    Article  PubMed  Google Scholar 

  47. Lysack JT, Soboleski D (2003) Classic metaphyseal lesion following external cephalic version and cesarean section. Pediatr Radiol 33:422–424

    PubMed  Google Scholar 

  48. Kleinman PK (1998) Diagnostic imaging of child abuse, 2nd edn. Mosby, Philadelphia

    Google Scholar 

  49. Chiara A, Beluffi G, Maino M et al (2005) Fractures in a neonatal and intensive care unit: frequency and evolution over time. Pediatr Res 58:365

    Article  Google Scholar 

  50. Feldman KW, Brewer DK (1984) Child abuse, cardiopulmonary resuscitation, and rib fractures. Pediatrics 73:339–342

    PubMed  CAS  Google Scholar 

  51. Conrad DA (2010) Acute hematogenous osteomyelitis. Pediatr Rev 31:464–471

    Article  PubMed  Google Scholar 

  52. Tridapalli E, Capretti MG, Reggiani MLB et al (2010) Congenital syphilis in Italy: a multicentre study. Arch Dis Child Fetal Neonatal Ed. doi:10.1136/adc.2010.183863

  53. Teberg A, Hodgman JE (1973) Congenital syphilis in newborn. Calif Med 118:5–10

    PubMed  CAS  Google Scholar 

  54. Rasool MN, Grovender S (1989) The skeletal manifestations of congenital syphilis, a review of 197 cases. J Bone Joint Surg Br 71:752–755

    PubMed  CAS  Google Scholar 

  55. Gadea A, Figueredo M, Bowen JR (1993) Persistent bony lesions in congenital syphilis. Int Orthop 17:43–47

    Article  PubMed  CAS  Google Scholar 

  56. Lachmann E (1955) Osteoporosis: the potentialities and limitations of its Roentgenologic diagnosis. AJR 74:712–715

    Google Scholar 

  57. Adams JE (2009) Imaging evaluation of osteoporosis. In: Weissman BN (ed) Imaging of arthritis and metabolic bone diseases. Saunders/Elsevier, Philadelphia, p 608

    Google Scholar 

  58. Eriksson S, Mellstrom D, Strandvik B (2009) Volumetric bone mineral density is an important tool when interpreting bone mineralization in healthy children. Acta Paediatr 98:374–379

    Article  PubMed  Google Scholar 

  59. Fewtrell MS, Loh KL, Chomtho S et al (2008) Quantitative ultrasound (QU/S): a useful tool for monitoring bone health in preterm infants? Acta Paediatr 97:1625–1630

    Article  PubMed  CAS  Google Scholar 

Suggestions for additional reading

  • Ross FP (2008) Osteoclast biology and bone resorption. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 7th edn. ASBMR, Washington, D.C., pp 16–21

    Chapter  Google Scholar 

  • Bonewald LF (2008) Osteocytes. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 7th edn. ASBMR, Washington, D.C., pp 22–26

    Chapter  Google Scholar 

  • Morgan EF, Einhorn TA (2008) Biomechanics of fracture healing. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 7th edn. ASBMR, Washington, D.C., pp 65–71

    Chapter  Google Scholar 

  • Nissenson RA, Juppner H (2008) Parathyroid hormone. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 7th edn. ASBMR, Washington, D.C., pp 123–126

    Chapter  Google Scholar 

  • Wysomerski JJ (2008) Parathyroid hormone-related protein. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 7th edn. ASBMR, Washington, D.C., pp 127–133

    Chapter  Google Scholar 

  • Brown EM (2008) Ca2+-sensing receptor. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 7th edn. ASBMR, Washington, D.C., pp 134–140

    Chapter  Google Scholar 

  • Bikle D, Adams J, Christakos S (2008) Vitamin D: production, metabolism, mechanism of action and clinical replacement. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 7th edn. ASBMR, Washington, D.C., pp 141–151

    Chapter  Google Scholar 

  • Gray T, Lowe W, Lester GE (1981) Vitamin D and pregnancy: the maternal-fetal metabolism of vitamin D. Endocr Rev 2:264–274

    Article  PubMed  CAS  Google Scholar 

  • Wang Y-L, Wu H, Liu YB et al (1998) Newborn bone mineral density and health care during pregnancy. J Bone Miner Metab 16:190–192

    Article  Google Scholar 

  • Papandreou D, Malindretos P, Karabouta Z et al (2010) Possible health implications and low Vitamin D status during childhood and adolescence: an updated mini review. Int J Endocr. Accessed 11 October 2010

  • Cao G, Gu Z, Ren Y et al (2009) Parathyroid hormone contributes to regulating milk calcium content and modulates neonatal bone formation cooperatively with calcium. Endocrinology 140:561–569

    Google Scholar 

  • Dijkstra SH, van Beek A, Janssen JW et al (2007) High prevalence of vitamin D deficiency in newborn infants of high-risk mothers. Arch Dis Child 92:750–753

    Article  PubMed  CAS  Google Scholar 

  • David L, Anast CS (1974) Calcium metabolism in newborn infants: the interrelationship of parathyroid hormone function and calcium, magnesium, and phosphorous metabolism in normal, “sick”, and hypocalcemic newborns. J Clin Invest 54:287–296

    Article  PubMed  CAS  Google Scholar 

  • Kulie T, Groff A, Redmer J et al (2009) Vitamin D: an evidence-based review. J Am Board Fam Med 22:698–706

    Article  PubMed  Google Scholar 

  • Greer FR (2008) 25-Hydroxyvitamin D: functional outcomes in infants and young children. Am J Clin Nutr 88:529s–533s

    PubMed  CAS  Google Scholar 

  • Pearce SHS, Cheetham TD (2010) Diagnosis and management of vitamin D deficiency. BMJ 340:142–147

    CAS  Google Scholar 

  • Tezer H, Siklar Z, Dallar Y et al (2009) Early and severe presentation of vitamin D deficiency and nutritional rickets among hospitalized infants and the effective factors. Turk J Pediatr 51:110–115

    PubMed  Google Scholar 

  • Molgaard C, Michaelsen KF (2003) Vitamin D and bone health in early life. Proc Nutr Soc 62:823–828

    Article  PubMed  CAS  Google Scholar 

  • Ilich JZ, Kerstetter JE (2000) Nutrition in bone health revisited: a story beyond calcium. J Am CollNutr 19:715–735

    CAS  Google Scholar 

  • Miao D, He B, Karaplis AC et al (2002) Parathyroid hormone is essential for normal fetal bone formation. J Clin Invest 109:1173–1182

    PubMed  CAS  Google Scholar 

  • Simmonds CS, Karsenty G, Karaplis AC et al (2010) Parathyroid hormone regulates fetal-placenta mineral homeostasis. J Bone Miner Res 25:594–605

    Article  PubMed  CAS  Google Scholar 

  • Prentice A (2003) Micronutrients and the bone mineral content of the mother, fetus and newborn. J Nutr 133:1693s–1699s

    PubMed  CAS  Google Scholar 

  • Greenbaum LA (2007) Rickets and hypervitaminosis D. In: Kliegman RM (ed) Nelson textbook of pediatrics, 18th edn. Saunders/Elsevier, Philadelphia, Chapter 48

    Google Scholar 

  • Park W, Paust H, Kaufmann HJ et al (1987) Osteomalacia of the mother—rickets of the newborn. Eur J Pediatr 146:292–293

    Article  PubMed  CAS  Google Scholar 

  • Sherman MS (1950) Osteomalacia. J Bone Joint Surg Am 32:193–206

    Google Scholar 

  • Allgrove J (2004) Is nutritional rickets returning? Arch Dis Child 89:699–701

    Article  PubMed  CAS  Google Scholar 

  • Erdeve O, Atasay B, Arsan S et al (2007) Hypocalcemic seizure due to congenital rickets in the first day of life. Turk J Pediatr 49:301–303

    PubMed  Google Scholar 

  • Doxiadis S, Angelis C, Karatzas P et al (1976) Genetic aspects of nutritional rickets. Arch Dis Child 51:83–90

    Article  PubMed  CAS  Google Scholar 

  • Mosalli R, Yasser E, Ali AM et al (2010) Congenital vitamin D deficiency: a rare etiology of an acute life threatening event in early infancy. Saudi J Kidney Dis Transpl 21:511–514

    PubMed  Google Scholar 

  • Reiss O, Boder E (1940) Congenital cranial osteoporosis: its etiology and significance: a study of eight hundred newborn infants. Am J Dis Child 59:931–1001

    Google Scholar 

  • Lewin P, Jenkinson EL (1927) Bone diseases in infants and children. Radiology 8:409–415

    Google Scholar 

  • Teele RL, Abbott GA, Mogridge N et al (1999) Femoral growth lines: bony birthmarks in infants. AJR 173:719–722

    PubMed  CAS  Google Scholar 

  • Matsubara S, Izumi A, Nagai T et al (2008) Femur fracture during abdominal breech delivery. Arch Gynecol Obstet 278:195–197

    Article  PubMed  Google Scholar 

  • Canpolat F, Kose A, Yurdakok M (2009) Bilateral humerus fracture in a neonate after cesarean delivery. Arch Gynecol Obstet 281:967–969

    Article  PubMed  Google Scholar 

  • Weinstein RS (2008) Glucocorticoid-induced osteoporosis. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 7th edn. ASBMR, Washington, D.C., pp 267–272

    Chapter  Google Scholar 

  • Baroncelli GI, Bereket A, El Kholy M et al (2008) Rickets in the Middle East: role of environment and genetic predisposition. J Clin Endocrinol Metab 93:1743–1750

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The author would like to thank Walter E. Berdon, M.D., for his kind help and advice and for reading this article prior to publication.

Disclaimer

The supplement this article is part of is not sponsored by the industry. Dr. Done has no financial interest, investigational or off-label uses to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen L. Done.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Done, S.L. Fetal and neonatal bone health: update on bone growth and manifestations in health and disease. Pediatr Radiol 42 (Suppl 1), 158–176 (2012). https://doi.org/10.1007/s00247-011-2251-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-011-2251-8

Keywords

Navigation