Skip to main content
Log in

PET-CT in children: where is it appropriate?

  • ALARA-CT
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

The use of PET/PET-CT is a rapidly growing area of imaging and research in the care of children. Until recently, diagnostic imaging methods have provided either anatomical or functional assessment. The development of fused imaging modalities, such as PET-CT or PET-MRI, now provides the opportunity for simultaneously providing both anatomical and functional or physiological assessment. This review will discuss current established uses of PET-CT, possible uses and potential research investigations in the use of this modality in the pediatric population. The focus of this paper will be its use in children being treated for non-central nervous system and non-cardiac disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kleis M, Daldrup-Link H, Matthay K et al (2009) Diagnostic value of PET/CT for the staging and restaging of pediatric tumors. Eur J Nucl Med Mol Imaging 36:23–36

    Article  PubMed  Google Scholar 

  2. Murphy JJ, Tawfeeq M, Chang B et al (2008) Early experience with PET/CT scan in the evaluation of pediatric abdominal neoplasms. J Pediatr Surg 43:2186–2192

    Article  PubMed  Google Scholar 

  3. Wegner EA, Barrington SF, Kingston JE et al (2005) The impact of PET scanning on management of paediatric oncology patients. Eur J Nucl Med Mol Imaging 32:23–30

    Article  PubMed  CAS  Google Scholar 

  4. Samuel AM (2010) PET/CT in pediatric oncology. Indian J Cancer 47:360–370

    Article  PubMed  CAS  Google Scholar 

  5. Nanni C, Rubello D, Castellucci P et al (2006) 18F-FDG PET/CT fusion imaging in paediatric solid extracranial tumours. Biomed Pharmacother 60:593–606

    Article  PubMed  CAS  Google Scholar 

  6. Hudson MM, Krasin MJ, Kaste SC (2004) PET imaging in pediatric Hodgkin’s lymphoma. Pediatr Radiol 34:190–198

    Article  PubMed  Google Scholar 

  7. Olson MR, Donaldson SS (2008) Treatment of pediatric Hodgkin lymphoma. Curr Treat Options Oncol 9:81–94

    Article  PubMed  Google Scholar 

  8. Shulkin BL, Hutchinson RJ, Castle VP et al (1996) Neuroblastoma: positron emission tomography with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose compared with metaiodobenzylguanidine scintigraphy. Radiology 199:743–750

    PubMed  CAS  Google Scholar 

  9. Volker T, Denecke T, Steffen I et al (2007) Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol 25:5435–5441

    Article  PubMed  Google Scholar 

  10. Kumar R, Chauhan A, Vellimana AK et al (2006) Role of PET/PET-CT in the management of sarcomas. Expert Rev Anticancer Ther 6:1241–1250

    Article  PubMed  Google Scholar 

  11. Hawkins DS, Schuetze SM, Butrynski JE et al (2005) [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol 23:8828–8834

    Article  PubMed  Google Scholar 

  12. Nair N, Ali A, Green AA et al (2000) Response of Osteosarcoma to Chemotherapy. Evaluation with F-18 FDG-PET Scans. Clin Positron Imaging 3:79–83

    Article  PubMed  Google Scholar 

  13. Costelloe CM, Macapinlac HA, Madewell JE et al (2009) 18F-FDG PET/CT as an indicator of progression-free and overall survival in osteosarcoma. J Nucl Med 50:340–347

    Article  PubMed  Google Scholar 

  14. Brenner W, Bohuslavizki KH, Eary JF (2003) PET imaging of osteosarcoma. J Nucl Med 44:930–942

    PubMed  Google Scholar 

  15. Kushner BH, Yeung HW, Larson SM et al (2001) Extending positron emission tomography scan utility to high-risk neuroblastoma: fluorine-18 fluorodeoxyglucose positron emission tomography as sole imaging modality in follow-up of patients. J Clin Oncol 19:3397–3405

    PubMed  CAS  Google Scholar 

  16. Sharp SE, Shulkin BL, Gelfand MJ et al (2009) 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med 50:1237–1243

    Article  PubMed  Google Scholar 

  17. Kaste SC (2008) 18F-PET-CT in extracranial paediatric oncology: when and for whom is it useful? Pediatr Radiol 38(Suppl 3):S459–S466

    Article  PubMed  Google Scholar 

  18. Begent J, Sebire NJ, Levitt G et al (2011) Pilot study of F(18)-Fluorodeoxyglucose Positron Emission Tomography/computerised tomography in Wilms’ tumour: correlation with conventional imaging, pathology and immunohistochemistry. Eur J Cancer 47:389–396

    Article  PubMed  Google Scholar 

  19. Misch D, Steffen IG, Schonberger S et al (2008) Use of positron emission tomography for staging, preoperative response assessment and posttherapeutic evaluation in children with Wilms tumour. Eur J Nucl Med Mol Imaging 35:1642–1650

    Article  PubMed  Google Scholar 

  20. Moinul Hossain AK, Shulkin BL, Gelfand MJ et al (2010) FDG positron emission tomography/computed tomography studies of Wilms’ tumor. Eur J Nucl Med Mol Imaging 37:1300–1308

    Article  PubMed  CAS  Google Scholar 

  21. Owens CM, Brisse HJ, Olsen OE et al (2008) Bilateral disease and new trends in Wilms tumour. Pediatr Radiol 38:30–39

    Article  PubMed  Google Scholar 

  22. Franzius C, Daldrup-Link HE, Wagner-Bohn A et al (2002) FDG-PET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging. Ann Oncol 13:157–160

    Article  PubMed  CAS  Google Scholar 

  23. Pauls S, Buck AK, Halter G et al (2008) Performance of integrated FDG-PET/CT for differentiating benign and malignant lung lesions—results from a large prospective clinical trial. Mol Imaging Biol 10:121–128

    Article  PubMed  Google Scholar 

  24. Krasin MJ, Hudson MM, Kaste SC (2004) Positron emission tomography in pediatric radiation oncology: integration in the treatment-planning process. Pediatr Radiol 34:214–221

    Article  PubMed  Google Scholar 

  25. Binkovitz LA, Olshefski RS, Adler BH (2003) Coincidence FDG-PET in the evaluation of Langerhans’ cell histiocytosis: preliminary findings. Pediatr Radiol 33:598–602

    Article  PubMed  Google Scholar 

  26. Blum R, Seymour JF, Hicks RJ (2002) Role of 18FDG-positron emission tomography scanning in the management of histiocytosis. Leuk Lymphoma 43:2155–2157

    Article  PubMed  Google Scholar 

  27. Phillips M, Allen C, Gerson P et al (2009) Comparison of FDG-PET scans to conventional radiography and bone scans in management of Langerhans cell histiocytosis. Pediatr Blood Cancer 52:97–101

    Article  PubMed  Google Scholar 

  28. Van Nieuwenhuyse JP, Clapuyt P, Malghem J et al (1996) Radiographic skeletal survey and radionuclide bone scan in Langerhans cell histiocytosis of bone. Pediatr Radiol 26:734–738

    Article  PubMed  Google Scholar 

  29. Kaste SC, Rodriguez-Galindo C, McCarville ME et al (2007) PET-CT in pediatric Langerhans cell histiocytosis. Pediatr Radiol 37:615–622

    Article  PubMed  Google Scholar 

  30. Bredella MA, Torriani M, Hornicek F et al (2007) Value of PET in the assessment of patients with neurofibromatosis type 1. AJR 189:928–935

    Article  PubMed  Google Scholar 

  31. Brenner W, Friedrich RE, Gawad KA et al (2006) Prognostic relevance of FDG PET in patients with neurofibromatosis type-1 and malignant peripheral nerve sheath tumours. Eur J Nucl Med Mol Imaging 33:428–432

    Article  PubMed  Google Scholar 

  32. Ferner RE, Golding JF, Smith M et al (2008) [18F]2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) as a diagnostic tool for neurofibromatosis 1 (NF1) associated malignant peripheral nerve sheath tumours (MPNSTs): a long-term clinical study. Ann Oncol 19:390–394

    Article  PubMed  CAS  Google Scholar 

  33. Zhuang H, Yang H, Alavi A (2007) Critical role of 18F-labeled fluorodeoxyglucose PET in the management of patients with arthroplasty. Radiol Clin North Am 45:711–718, vii

    Article  PubMed  Google Scholar 

  34. Meller J, Sahlmann CO, Scheel AK (2007) 18F-FDG PET and PET/CT in fever of unknown origin. J Nucl Med 48:35–45

    PubMed  CAS  Google Scholar 

  35. Imperiale A, Blondet C, Ben-Sellem D et al (2008) Unusual abdominal localization of cat scratch disease mimicking malignancy on F-18 FDG PET/CT examination. Clin Nucl Med 33:621–623

    Article  PubMed  Google Scholar 

  36. Federici L, Blondet C, Imperiale A et al (2010) Value of (18)F-FDG-PET/CT in patients with fever of unknown origin and unexplained prolonged inflammatory syndrome: a single centre analysis experience. Int J Clin Pract 64:55–60

    Article  PubMed  CAS  Google Scholar 

  37. Braun JJ, Kessler R, Constantinesco A et al (2008) 18F-FDG PET/CT in sarcoidosis management: review and report of 20 cases. Eur J Nucl Med Mol Imaging 35:1537–1543

    Article  PubMed  Google Scholar 

  38. Bleeker-Rovers CP, van der Meer JW, Oyen WJ (2009) Fever of unknown origin. Semin Nucl Med 39:81–87

    Article  PubMed  Google Scholar 

  39. Keidar Z, Gurman-Balbir A, Gaitini D et al (2008) Fever of unknown origin: the role of 18F-FDG PET/CT. J Nucl Med 49:1980–1985

    Article  PubMed  Google Scholar 

  40. Klein M, Cohen-Cymberknoh M, Armoni S et al (2009) 18F-fluorodeoxyglucose-PET/CT imaging of lungs in patients with cystic fibrosis. Chest 136:1220–1228

    Article  PubMed  Google Scholar 

  41. Milman N, Mortensen J, Sloth C (2003) Fluorodeoxyglucose PET scan in pulmonary sarcoidosis during treatment with inhaled and oral corticosteroids. Respiration 70:408–413

    Article  PubMed  CAS  Google Scholar 

  42. Strobel K, Stumpe KD (2007) PET/CT in musculoskeletal infection. Semin Musculoskelet Radiol 11:353–364

    Article  PubMed  Google Scholar 

  43. Zoccali C, Teori G, Salducca N (2009) The role of FDG-PET in distinguishing between septic and aseptic loosening in hip prosthesis: a review of literature. Int Orthop 33:1–5

    Article  PubMed  CAS  Google Scholar 

  44. Arnaud L, Haroche J, Malek Z et al (2009) Is (18)F-fluorodeoxyglucose positron emission tomography scanning a reliable way to assess disease activity in Takayasu arteritis? Arthritis Rheum 60:1193–1200

    Article  PubMed  Google Scholar 

  45. Bleeker-Rovers CP, Bredie SJ, van der Meer JW et al (2003) F-18-fluorodeoxyglucose positron emission tomography in diagnosis and follow-up of patients with different types of vasculitis. Neth J Med 61:323–329

    PubMed  CAS  Google Scholar 

  46. Groshar D, Bernstine H, Stern D et al (2010) PET/CT enterography in Crohn disease: correlation of disease activity on CT enterography with 18F-FDG uptake. J Nucl Med 51:1009–1014

    Article  PubMed  Google Scholar 

  47. Ahmadi A, Li Q, Muller K et al (2010) Diagnostic value of noninvasive combined fluorine-18 labeled fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography enterography in active Crohn’s disease. Inflamm Bowel Dis 16:974–981

    PubMed  Google Scholar 

  48. Gelfand MJ (2010) Dose reduction in pediatric hybrid and planar imaging. Q J Nucl Med Mol Imaging 54:379–388

    Google Scholar 

  49. Gelfand MJ, Parisi MT, Treves ST (2011) Pediatric radiopharmaceutical administered doses: 2010 North American consensus guidelines. J Nucl Med 52:318–322

    Google Scholar 

  50. Stauss J, Franzius C, Pfluger T et al (2008) Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging 35:1581–1588

    Google Scholar 

  51. Gelfand MJ, Lemen LC (2007) PET/CT and SPECT/CT dosimetry in children: the challenge to the pediatric imager. Semin Nucl Med 37:391–398

    Google Scholar 

  52. Jadvar H, Connolly LP, Fahey FH et al (2007) PET and PET/CT in pediatric oncology. Semin Nucl Med 37:316–331

    Google Scholar 

  53. AAPM Task Group 23 (2008) The measurement, reporting, and management of radiation dose in CT. Report 96. Available via http://www.aapm.org/pubs/reports/RPT_96.pdf. Accessed 10 May 2011

  54. Chawla SC, Federman N, Zhang D et al (2010) Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review. Pediatr Radiol 40:681–686

    Google Scholar 

  55. (2011) The alliance for radiation safety in pediatric imaging. Available via http://www.imagegently.org. Accessed 10 May 2011

Download references

Acknowledgement

We thank Ms. Sandra Gaither for manuscript preparation.

Disclaimer

The supplement this article is part of is not sponsored by the industry. Dr. Kaste has no investigational or off-label uses to disclose. This work is supported in part by grants P30 CA-21765 from the National Institutes of Health, a Center of Excellence grant from the State of Tennessee, and the American Lebanese Syrian Associated Charities (ALSAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue C. Kaste.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaste, S.C. PET-CT in children: where is it appropriate?. Pediatr Radiol 41 (Suppl 2), 509 (2011). https://doi.org/10.1007/s00247-011-2096-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00247-011-2096-1

Keywords

Navigation