Skip to main content
Log in

Whole-body MR angiography: initial experience in imaging pediatric vasculopathy

  • Pictorial Essay
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Radiological assessment of vasculopathy in children is typically undertaken with ultrasonography, echocardiography, conventional angiography, computed tomography and, more recently, positron emission tomography. Drawbacks of these modalities include radiation exposure or, in the case of ultrasonography, the dependence on operator skills and sufficient acoustic windows. With advancements in MR technology, which have improved sensitivity and shortened scan times, whole-body magnetic resonance angiography (WB-MRA) lends itself as a potential “one-stop shop” for vascular imaging. Currently, WB-MRA is primarily used in adult patients with atherosclerosis or multifocal regional vasculopathy. WB-MRA has not been employed in the routine assessment of pediatric vascular disease. The purpose of this article is to describe and illustrate our WB-MRA imaging technique for evaluation of pediatric vasculopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cheung YF, Brogan PA, Pilla CB et al (2002) Arterial distensibility in children and teenagers: normal evolution and the effect of childhood vasculitis. Arch Dis Child 87:348–351

    Article  PubMed  CAS  Google Scholar 

  2. Ozen S (2002) The spectrum of vasculitis in children. Best Pract Res Clin Rheumatol 16:411–425

    PubMed  CAS  Google Scholar 

  3. Kramer H, Quick HH, Tombach B et al (2008) Whole-Body MRA. Eur Radiol 18:1925–1936

    Article  PubMed  Google Scholar 

  4. Krishnamurthy R, Muthupillai R, Chung T (2009) Pediatric body MR angiography. Magn Reson Imaging Clin N Am 17:133–144

    Article  PubMed  Google Scholar 

  5. Anzalone N, Scomazzoni F, Castellano R et al (2005) Carotid artery stenosis: intraindividual correlations of 3D time-of-flight MR angiography, contrast-enhanced MR angiography, conventional DSA, and rotational angiography for detection and grading. Radiology 236:204–213

    Article  PubMed  Google Scholar 

  6. Nederkoorn PJ, Elgersma OE, van der Graaf Y et al (2003) Carotid artery stenosis: accuracy of contrast-enhanced MR angiography for diagnosis. Radiology 228:677–682

    Article  PubMed  Google Scholar 

  7. Shiga T, Wajima Z, Apfel CC et al (2006) Diagnostic accuracy of transesophageal echocardiography, helical computed tomography, and magnetic resonance imaging for suspected thoracic aortic dissection: systematic review and meta-analysis. Arch Intern Med 166:1350–1356

    Article  PubMed  Google Scholar 

  8. Fenchel M, Nael K, Seeger A et al (2008) Whole-body magnetic resonance angiography at 3.0 Tesla. Eur Radiol 18:1473–1483

    Article  PubMed  Google Scholar 

  9. Herborn CU, Goyen M, Quick HH et al (2004) Whole-body 3D MR angiography of patients with peripheral arterial occlusive disease. AJR 182:1427–1434

    PubMed  Google Scholar 

  10. Nael K, Ruehm SG, Michaely HJ et al (2007) Multistation whole-body high-spatial-resolution MR angiography using a 32-channel MR system. AJR 188:529–539

    Article  PubMed  Google Scholar 

  11. Shirley ED, Sponseller PD (2009) Marfan syndrome. J Am Acad Orthop Surg 17:572–581

    PubMed  Google Scholar 

  12. McKusick VA (1955) The cardiovascular aspects of Marfan’s syndrome: a heritable disorder of connective tissue. Circulation 11:321–342

    PubMed  CAS  Google Scholar 

  13. De Paepe A, Devereux RB, Dietz HC et al (1996) Revised diagnostic criteria for the Marfan syndrome. Am J Med Genet 62:417–426

    Article  PubMed  Google Scholar 

  14. Ammash NM, Sundt TM, Connolly HM (2008) Marfan syndrome-diagnosis and management. Curr Probl Cardiol 33:7–39

    Article  PubMed  Google Scholar 

  15. Goo HW, Seo DM, Yun TJ et al (2009) Coronary artery anomalies and clinically important anatomy in patients with congenital heart disease: multislice CT findings. Pediatr Radiol 39:265–273

    Article  PubMed  Google Scholar 

  16. Loeys BL, Chen J, Neptune ER et al (2005) A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 37:275–281

    Article  PubMed  CAS  Google Scholar 

  17. Loeys BL, Schwarze U, Holm T et al (2006) Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med 355:788–798

    Article  PubMed  CAS  Google Scholar 

  18. Johnson PT, Chen JK, Loeys BL et al (2007) Loeys-Dietz syndrome: MDCT angiography findings. AJR 189:W29–35

    Article  PubMed  Google Scholar 

  19. Williams JA, Loeys BL, Nwakanma LU et al (2007) Early surgical experience with Loeys-Dietz: a new syndrome of aggressive thoracic aortic aneurysm disease. Ann Thorac Surg 83:S757–763, discussion S785–790

    Article  PubMed  Google Scholar 

  20. Aalberts JJ, van den Berg MP, Bergman JE et al (2008) The many faces of aggressive aortic pathology: Loeys-Dietz syndrome. Neth Heart J 16:299–304

    Article  PubMed  CAS  Google Scholar 

  21. Wood LE, Tulloh RM (2009) Kawasaki disease in children. Heart 95:787–792

    Article  PubMed  CAS  Google Scholar 

  22. Dillon MJ (1998) Childhood vasculitis. Lupus 7:259–265

    Article  PubMed  CAS  Google Scholar 

  23. Numano F, Okawara M, Inomata H et al (2000) Takayasu's arteritis. Lancet 356:1023–1025

    Article  PubMed  CAS  Google Scholar 

  24. Kissin EY, Merkel PA (2004) Diagnostic imaging in Takayasu arteritis. Curr Opin Rheumatol 16:31–37

    Article  PubMed  Google Scholar 

  25. Yamada I, Nakagawa T, Himeno Y et al (2000) Takayasu arteritis: diagnosis with breath-hold contrast-enhanced three-dimensional MR angiography. J Magn Reson Imaging 11:481–487

    Article  PubMed  CAS  Google Scholar 

  26. Cantu C, Pineda C, Barinagarrementeria F et al (2000) Noninvasive cerebrovascular assessment of Takayasu arteritis. Stroke 31:2197–2202

    PubMed  CAS  Google Scholar 

  27. Bluemke DA, Achenbach S, Budoff M et al (2008) Noninvasive coronary artery imaging: magnetic resonance angiography and multidetector computed tomography angiography: a scientific statement from the American Heart Association committee on cardiovascular imaging and intervention of the council on cardiovascular radiology and intervention, and the councils on clinical cardiology and cardiovascular disease in the young. Circulation 118:586–606

    Article  PubMed  Google Scholar 

  28. Lee VS, Martin DJ, Krinsky GA et al (2000) Gadolinium-enhanced MR angiography: artifacts and pitfalls. AJR 175:197–205

    PubMed  CAS  Google Scholar 

  29. Tullus K, Brennan E, Hamilton G et al (2008) Renovascular hypertension in children. Lancet 371:1453–1463

    Article  PubMed  CAS  Google Scholar 

  30. Tullus K, Roebuck DJ, McLaren CA et al (2010) Imaging in the evaluation of renovascular disease. Pediatr Nephrol 25:1049–1056

    Article  PubMed  Google Scholar 

  31. Lin K, Zhang ZQ, Sun JY et al (2008) Low injection rate for 3D moving-table bolus-chase MR angiography: initial experience with 3-T imaging to allay venous contamination in the calf. AJR 191:1734–1739

    Article  PubMed  Google Scholar 

  32. Herborn CU, Ajaj W, Goyen M et al (2004) Peripheral vasculature: whole-body MR angiography with midfemoral venous compression—initial experience. Radiology 230:872–878

    Article  PubMed  Google Scholar 

  33. Vogt FM, Ajaj W, Hunold P et al (2004) Venous compression at high-spatial-resolution three-dimensional MR angiography of peripheral arteries. Radiology 233:913–920

    Article  PubMed  Google Scholar 

  34. Zhang H, Ho B, Mohajer K et al (2007) Peripheral magnetic resonance angiography with a multi-compartment curved leg wrap for thigh compression. J Cardiovasc Magn Reson 9:659–664

    Article  PubMed  Google Scholar 

  35. Zhang HL, Ho BY, Chao M et al (2004) Decreased venous contamination on 3D gadolinium-enhanced bolus chase peripheral MR angiography using thigh compression. AJR 183:1041–1047

    PubMed  Google Scholar 

  36. Carroll TJ, Korosec FR, Swan JS et al (2000) Method for rapidly determining and reconstructing the peak arterial frame from a time-resolved CE-MRA exam. Magn Reson Med 44:817–820

    Article  PubMed  CAS  Google Scholar 

  37. Korosec FR, Frayne R, Grist TM et al (1996) Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 36:345–351

    Article  PubMed  CAS  Google Scholar 

  38. Broome DR (2008) Nephrogenic systemic fibrosis associated with gadolinium based contrast agents: a summary of the medical literature reporting. Eur J Radiol 66:230–234

    Article  PubMed  Google Scholar 

  39. Mendichovszky IA, Marks SD, Simcock CM et al (2008) Gadolinium and nephrogenic systemic fibrosis: time to tighten practice. Pediatr Radiol 38:489–496, quiz 602–483

    Article  PubMed  Google Scholar 

  40. Cowper SE (2008) Nephrogenic systemic fibrosis: an overview. J Am Coll Radiol 5:23–28

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Wendy Doda, Pallavi Sriram and Tommy Stuleanu for their help in the preparation of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Babyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, T.S., Greer, ML.C., Grosse-Wortmann, L. et al. Whole-body MR angiography: initial experience in imaging pediatric vasculopathy. Pediatr Radiol 41, 769–778 (2011). https://doi.org/10.1007/s00247-010-1958-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-010-1958-2

Keywords

Navigation