Skip to main content
Log in

Brown adipose tissue 18F-FDG uptake in pediatric PET/CT imaging

  • Pictorial Essay
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Positron emission tomography (PET) using [F-18]2-fluoro-2-deoxyglucose (FDG) fused with CT (18F-FDG PET/CT) has been widely adopted in oncological imaging. However, it is known that benign lesions and other metabolically active tissues, such as brown adipose tissue (BAT), can accumulate 18F-FDG, potentially resulting in false-positive interpretation. Previous studies have reported that 18F-FDG uptake in BAT is more common in children than in adults. We illustrate BAT FDG uptake in various anatomical locations in children and adolescents. We also review what is known about the effects of patient-related physical attributes and environmental temperatures on BAT FDG uptake, and discuss methods used to reduce BAT FDG uptake on 18F-FDG PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Depas G, De Barsy C, Jerusalem G et al (2005) 18F-FDG PET in children with lymphomas. Eur J Nucl Med Mol Imaging 32:31–38

    Article  PubMed  Google Scholar 

  2. Franzius C, Schober O (2003) Assessment of therapy response by FDG PET in pediatric patients. Q J Nucl Med 47:41–45

    PubMed  CAS  Google Scholar 

  3. Hudson MM, Krasin MJ, Kaste SC (2004) PET imaging in pediatric Hodgkin’s lymphoma. Pediatr Radiol 34:190–198

    Article  PubMed  Google Scholar 

  4. Shulkin BL, Mitchell DS, Ungar DR et al (1995) Neoplasms in a pediatric population: 2-[F-18]-fluoro-2-deoxy-D-glucose PET studies. Radiology 194:495–500

    PubMed  CAS  Google Scholar 

  5. Tatsumi M, Miller JH, Wahl RL (2007) 18F-FDG PET/CT in evaluating non-CNS pediatric malignancies. J Nucl Med 48:1923–1931

    Article  PubMed  Google Scholar 

  6. Abouzied MM, Crawford ES, Nabi HA (2005) 18F-FDG imaging: pitfalls and artifacts. J Nucl Med Technol 33:145–155, quiz 162–163

    PubMed  Google Scholar 

  7. O’Hara SM, Donnelly LF, Coleman RE (1999) Pediatric body applications of FDG PET. AJR 172:1019–1024

    PubMed  Google Scholar 

  8. Blodgett TM, Meltzer CC, Townsend DW (2007) PET/CT: form and function. Radiology 242:360–385

    Article  PubMed  Google Scholar 

  9. Cohade C, Osman M, Pannu HK et al (2003) Uptake in supraclavicular area fat (‘USA-fat’): description on 18F-FDG PET/CT. J Nucl Med 44:170–176

    PubMed  CAS  Google Scholar 

  10. Truong MT, Erasmus JJ, Munden RF et al (2004) Focal FDG uptake in mediastinal brown fat mimicking malignancy: a potential pitfall resolved on PET/CT. AJR 183:1127–1132

    PubMed  Google Scholar 

  11. Yeung HW, Grewal RK, Gonen M et al (2003) Patterns of (18)F-FDG uptake in adipose tissue and muscle: a potential source of false-positives for PET. J Nucl Med 44:1789–1796

    PubMed  Google Scholar 

  12. Heaton JM (1972) The distribution of brown adipose tissue in the human. J Anat 112:35–39

    PubMed  CAS  Google Scholar 

  13. Cohade C (2010) Altered biodistribution on FDG-PET with emphasis on brown fat and insulin effect. Semin Nucl Med 40:283–293

    Article  PubMed  Google Scholar 

  14. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  PubMed  CAS  Google Scholar 

  15. Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293:E444–452

    Article  PubMed  CAS  Google Scholar 

  16. Del Mar Gonzalez-Barroso M, Ricquier D, Cassard-Doulcier AM (2000) The human uncoupling protein-1 gene (UCP1): present status and perspectives in obesity research. Obes Rev 1:61–72

    Article  Google Scholar 

  17. Nicholls DG, Rial E (1999) A history of the first uncoupling protein, UCP1. J Bioenerg Biomembr 31:399–406

    Article  PubMed  CAS  Google Scholar 

  18. Kawashita NH, Brito MN, Brito SR et al (2002) Glucose uptake, glucose transporter GLUT4, and glycolytic enzymes in brown adipose tissue from rats adapted to a high-protein diet. Metabolism 51:1501–1505

    Article  PubMed  CAS  Google Scholar 

  19. Olichon-Berthe C, Van Obberghen E, Le Marchand-Brustel Y (1992) Effect of cold acclimation on the expression of glucose transporter GLUT 4. Mol Cell Endocrinol 89:11–18

    Article  PubMed  CAS  Google Scholar 

  20. Lardinois D, Weder W, Hany TF et al (2003) Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 348:2500–2507

    Article  PubMed  Google Scholar 

  21. Okuyama C, Sakane N, Yoshida T et al (2002) (123)I- or (125)I-metaiodobenzylguanidine visualization of brown adipose tissue. J Nucl Med 43:1234–1240

    PubMed  CAS  Google Scholar 

  22. Barrington SF, Maisey MN (1996) Skeletal muscle uptake of fluorine-18-FDG: effect of oral diazepam. J Nucl Med 37:1127–1129

    PubMed  CAS  Google Scholar 

  23. Hany TF, Gharehpapagh E, Kamel EM et al (2002) Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging 29:1393–1398

    Article  PubMed  Google Scholar 

  24. Gelfand MJ, O'Hara SM, Curtwright LA et al (2005) Pre-medication to block [(18)F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatr Radiol 35:984–990

    Article  PubMed  Google Scholar 

  25. Cypess AM, Lehman S, Williams G et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517

    Article  PubMed  CAS  Google Scholar 

  26. Rodriguez-Cuenca S, Pujol E, Justo R et al (2002) Sex-dependent thermogenesis, differences in mitochondrial morphology and function, and adrenergic response in brown adipose tissue. J Biol Chem 277:42958–42963

    Article  PubMed  CAS  Google Scholar 

  27. Tennefors C, Forsum E (2004) Assessment of body fatness in young children using the skinfold technique and BMI vs. body water dilution. Eur J Clin Nutr 58:541–547

    Article  PubMed  CAS  Google Scholar 

  28. Cohade C, Mourtzikos KA, Wahl RL (2003) ‘USA-fat’: prevalence is related to ambient outdoor temperature-evaluation with 18F-FDG PET/CT. J Nucl Med 44:1267–1270

    PubMed  Google Scholar 

  29. Kim S, Krynyckyi BR, Machac J et al (2008) Temporal relation between temperature change and FDG uptake in brown adipose tissue. Eur J Nucl Med Mol Imaging 35:984–989

    Article  PubMed  Google Scholar 

  30. Zukotynski KA, Fahey FH, Laffin S et al (2010) Seasonal variation in the effect of constant ambient temperature of 24°C in reducing FDG uptake by brown adipose tissue in children. Eur J Nucl Med Mol Imaging 37:1854–1860

    Article  PubMed  Google Scholar 

  31. Christensen CR, Clark PB, Morton KA (2006) Reversal of hypermetabolic brown adipose tissue in F-18 FDG PET imaging. Clin Nucl Med 31:193–196

    Article  PubMed  Google Scholar 

  32. Bar-Sever Z, Keidar Z, Ben-Barak A et al (2007) The incremental value of 18F-FDG PET/CT in paediatric malignancies. Eur J Nucl Med Mol Imaging 34:630–637

    Article  PubMed  Google Scholar 

  33. Parysow O, Mollerach AM, Jager V et al (2007) Low-dose oral propranolol could reduce brown adipose tissue F-18 FDG uptake in patients undergoing PET scans. Clin Nucl Med 32:351–357

    Article  PubMed  Google Scholar 

  34. Sturkenboom MG, Hoekstra OS, Postema EJ et al (2009) A randomised controlled trial assessing the effect of oral diazepam on 18F-FDG uptake in the neck and upper chest region. Mol Imaging Biol 11:364–368

    Article  PubMed  Google Scholar 

  35. Williams G, Kolodny GM (2008) Method for decreasing uptake of 18F-FDG by hypermetabolic brown adipose tissue on PET. AJR 190:1406–1409

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. S.T. Treves for allowing us to include his data in this review. In addition, we would like to thank Wendy Doda, Tommy Stuleanu and Pallavi Sriram for their help in the preparation of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amer Shammas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, T.S., Shammas, A., Charron, M. et al. Brown adipose tissue 18F-FDG uptake in pediatric PET/CT imaging. Pediatr Radiol 41, 759–768 (2011). https://doi.org/10.1007/s00247-010-1925-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-010-1925-y

Keywords

Navigation