Skip to main content
Log in

Age-related variations in white matter anisotropy in school-age children

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Determination of diffusion tensor metrics in typically developing school-age children shows that maturational increases in fractional anisotropy (FA) vary across the brain and that age effects on FA are to increases in axial diffusivity in some regions, to decreases in radial diffusivity in some, and to both increases in axial and decreases in radial diffusivity in others.

Objective

When studying developing white matter (WM) using diffusion tensor imaging (DTI), knowledge of age-related normative tensor metrics is important, as normal variations can mask or mimic disease effects.

Materials and methods

Right-handed English-speaking children (n = 32) 6–18 years old (mean 11.0) were studied over 31 months, 7 longitudinally. Anisotropy data were analyzed using tract-based spatial statistics; 43 regions showing significant (P < 0.05) age effects on fractional anisotropy (FA) were analyzed for age effects (r), coefficient of variability (CV), and FA, axial and radial diffusivity. This study was IRB-approved.

Results

The callosal genu and splenium showed the highest FA values, smallest age effects, and lowest between-subject variability. Mean FA was lower and age effects were greatest in the dorsal callosal body. The highest age effects on FA were in the cingulum, centrum semiovale, right corticospinal tract, and right temporal WM. The dorsal callosal body, calcarine WM, superior frontal and temporal gyri, and right corticospinal tract showed the highest CV. Radial diffusivity decreased while axial diffusivity increased in the cingulum, decreased in the optic tracts, and showed minimal or no age effects in most other regions.

Conclusion

Age effects on FA and variability in FA are location-dependant in developing WM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219

    Article  CAS  PubMed  Google Scholar 

  2. Le Bihan D, Mangin JF, Poupon C et al (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546

    Article  PubMed  Google Scholar 

  3. Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis — a technical review. NMR Biomed 15:456–467

    Article  PubMed  Google Scholar 

  4. Jespersen SN, Kroenke CD, Ostergaard L et al (2007) Modeling dendrite density from magnetic resonance diffusion measurements. Neuroimage 34:1473–1486

    Article  PubMed  Google Scholar 

  5. Song SK, Yoshino J, Le TQ et al (2005) Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 26:132–140

    Article  PubMed  Google Scholar 

  6. Harsan LA, Poulet P, Guignard B et al (2006) Brain dysmyelination and recovery assessment by noninvasive in vivo diffusion tensor magnetic resonance imaging. J Neurosci Res 83:392–402

    Article  CAS  PubMed  Google Scholar 

  7. Hasan KM (2006) Diffusion tensor eigenvalues or both mean diffusivity and fractional anisotropy are required in quantitative clinical diffusion tensor MR reports: fractional anisotropy alone is not sufficient. Radiology 239:611–613

    Article  PubMed  Google Scholar 

  8. Hoeft F, Barnea-Goraly N, Haas BW et al (2007) More is not always better: increased fractional anisotropy of superior longitudinal fasciculus associated with poor visuospatial abilities in Williams syndrome. J Neurosci 27:11960–11965

    Article  CAS  PubMed  Google Scholar 

  9. Silk TJ, Vance A, Rinehart N et al (2009) White-matter abnormalities in attention deficit hyperactivity disorder: a diffusion tensor imaging study. Hum Brian Mapp 30:2757–2765

    Article  Google Scholar 

  10. Hamilton LS, Levitt JG, O’Neill J et al (2008) Reduced white matter integrity in attention-deficit hyperactivity disorder. NeuroReport 19:1705–1708

    Article  PubMed  Google Scholar 

  11. Skranes J, Vangberg TR, Kulseng S et al (2007) Clinical findings and white matter abnormalities seen on diffusion tensor imaging in adolescents with very low birth weight. Brain 130:654–666

    Article  CAS  PubMed  Google Scholar 

  12. Constable RT, Ment LR, Vohr BR et al (2008) Prematurely born children demonstrate white matter microstructural differences at 12 years of age, relative to term control subjects: an investigation of group and gender effects. Pediatrics 121:306–316

    Article  PubMed  Google Scholar 

  13. Khong PL, Leung LH, Chan GC et al (2005) White matter anisotropy in childhood medulloblastoma survivors: association with neurotoxicity risk factors. Radiology 236:647–652

    Article  PubMed  Google Scholar 

  14. Alexander AL, Lee JE, Lazar M et al (2007) Diffusion tensor imaging of the corpus callosum in Autism. Neuroimage 34:61–73

    Article  PubMed  Google Scholar 

  15. Yuan W, Holland SK, Schmithorst VJ et al (2007) Diffusion tensor MR imaging reveals persistent white matter alteration after traumatic brain injury experienced during early childhood. AJNR 28:1919–1925

    Article  CAS  PubMed  Google Scholar 

  16. Richards T, Stevenson J, Crouch LC et al (2008) Tract-based spatial statistics of diffusion tensor imaging in adults with dyslexia. AJNR 29:1134–1139

    Article  CAS  PubMed  Google Scholar 

  17. Deutsch GK, Dougherty RF, Bammer R et al (2005) Children’s reading performance is correlated with white matter structure measured by diffusion tensor imaging. Cortex 41:354–363

    Article  PubMed  Google Scholar 

  18. Jones DK, Horsfield MA, Simmons A (1999) Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 42:515–525

    Article  CAS  PubMed  Google Scholar 

  19. Friedman L, Glover GH (2006) Report on a multicenter fMRI Quality Assurance Protocol. J Magn Reson Imaging 23:827–839

    Article  PubMed  Google Scholar 

  20. Netsch T, van Muiswinkel A (2004) Quantitative evaluation of image-based distortion correction in diffusion tensor imaging. IEEE Trans Med Imaging 23:789–798

    Article  PubMed  Google Scholar 

  21. Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505

    Article  PubMed  Google Scholar 

  22. Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited — comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 32:989–994

    Article  PubMed  Google Scholar 

  23. Mori S, Wakana S, Nagae-Poetscher LM et al (2005) MRI atlas of human white matter. Elsevier BV, Amsterdam

    Google Scholar 

  24. Snedecor GW, Cochran WG (1980) Statistical methods, 7th edn. Iowa State University Press, Ames

    Google Scholar 

  25. Barnea-Goraly N, Menon V, Eckert M et al (2005) White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cereb Cortex 15:1848–1854

    Article  PubMed  Google Scholar 

  26. Eluvathingal TJ, Hasan KM, Kramer L et al (2007) Quantitative diffusion tensor tractography of association and projection fibers in normally developing children and adolescents. Cereb Cortex 17:2760–2768

    Article  PubMed  Google Scholar 

  27. Gao W, Lin W, Chen Y et al (2009) Temporal and spatial development of axonal maturation and myelination of white matter in the developing brain. AJNR 30:290–296

    Article  CAS  PubMed  Google Scholar 

  28. Giorgio A, Watkins KE, Chadwick M et al (2010) Longitudinal changes in grey and white matter during adolescence. Neuroimage 49:94–103

    Article  CAS  PubMed  Google Scholar 

  29. Hermoye L, Saint-Martin C, Cosnard G et al (2006) Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood. Neuroimage 29:493–504

    Article  PubMed  Google Scholar 

  30. Ashtari M, Cervellione KL, Hasan KM et al (2007) White matter development during late adolescence in healthy males: a cross-sectional diffusion tensor imaging study. Neuroimage 35:501–510

    Article  PubMed  Google Scholar 

  31. Qiu D, Tan LH, Zhou K et al (2008) Diffusion tensor imaging of normal white matter maturation from late childhood to young adulthood: voxel-wise evaluation of mean diffusivity, fractional anisotropy, radial and axial diffusivities, and correlation with reading development. Neuroimage 41:223–232

    Article  PubMed  Google Scholar 

  32. Basser PJ, Pajevic S, Pierpaoli C et al (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632

    Article  CAS  PubMed  Google Scholar 

  33. Mori S, Kaufmann WE, Davatzikos C et al (2002) Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magn Reson Med 47:215–223

    Article  PubMed  Google Scholar 

  34. Mukherjee P, Chung SW, Berman JI et al (2008) Diffusion tensor MR imaging and fiber tractography: technical considerations. AJNR 29:843–852

    Article  CAS  PubMed  Google Scholar 

  35. Snook L, Plewes C, Beaulieu C (2007) Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment. Neuroimage 34:243–252

    Article  PubMed  Google Scholar 

  36. Jones DK, Symms MR, Cercignani M et al (2005) The effect of filter size on VBM analyses of DT-MRI data. Neuroimage 26:546–554

    Article  PubMed  Google Scholar 

  37. Rollins NK, Morris MC, Chia JM et al (2010) Comparison of FA values from TBSS vs. manual ROI analysis. Presented at the 19th Annual Meeting of the International Society of Magnetic Resonance in Medicine. Stockholm Sweden, May 2010

  38. Takei K, Yamasue H, Abe O et al (2009) Structural disruption of the dorsal cingulum bundle is associated with impaired Stroop performance in patients with schizophrenia. Schizophr Res 114:119–127

    Article  PubMed  Google Scholar 

  39. Wang F, Jackowski M, Kalmar JH et al (2008) Abnormal anterior cingulum integrity in bipolar disorder determined through diffusion tensor imaging. Br J Psychiatry 193:126–129

    Article  PubMed  Google Scholar 

  40. Ozturk A, Sasson AD, Farrell JA et al (2008) Regional differences in diffusion tensor imaging measurements: assessment of intrarater and interrater variability. AJNR 29:1124–1127

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy K. Rollins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rollins, N.K., Glasier, P., Seo, Y. et al. Age-related variations in white matter anisotropy in school-age children. Pediatr Radiol 40, 1918–1930 (2010). https://doi.org/10.1007/s00247-010-1744-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-010-1744-1

Keywords

Navigation