Pediatric Radiology

, Volume 40, Issue 6, pp 819–833 | Cite as

MRI of perinatal brain injury

  • Mary RutherfordEmail author
  • Miriam Martinez Biarge
  • Joanna Allsop
  • Serena Counsell
  • Frances Cowan


MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome.


Brain Ischaemia MRI Neonate 



We would like to thank all the staff of the Robert Steiner MR Unit, Hammersmith Hospital and the neonatal units of Hammersmith and Queen Charlottes Hospital. We are also grateful to The Medical Research Council, Philips Medical Systems and the Biomedical Research Centre for their support.


  1. 1.
    Rutherford M, Ramenghi LA, Edwards AD et al (2010) Assessment of brain tissue injury after moderate hypothermia in neonates with hypoxic-ischaemic encephalopathy: a nested substudy of a randomised controlled trial. Lancet Neurol 9:39–45CrossRefPubMedGoogle Scholar
  2. 2.
    van Wezel-Meijler G, Leijser LM, de Bruïne FT et al (2009) Magnetic resonance imaging of the brain in newborn infants: practical aspects. Early Hum Dev 85:85–92CrossRefPubMedGoogle Scholar
  3. 3.
    Jiang S, Xue H, Glover A et al (2007) MRI of moving subjects using multislice snapshot images with volume reconstruction (SVR): application to fetal, neonatal, and adult brain studies. IEEE Trans Med Imaging 26:967–980CrossRefPubMedGoogle Scholar
  4. 4.
    Barkovich AJ, Hajnal BL, Vigneron D et al (1998) Prediction of neuromotor outcome in perinatal asphyxia: evaluation of MR scoring systems. AJNR 19:143–149PubMedGoogle Scholar
  5. 5.
    Liauw L, van der Grond J, van den Berg-Huysmans AA et al (2008) Hypoxic-ischemic encephalopathy: diagnostic value of conventional MR imaging pulse sequences in term-born neonates. Radiology 247:204–212CrossRefPubMedGoogle Scholar
  6. 6.
    Coren ME, Buchdahl RM, Cowan FM et al (1999) Imaging and laboratory investigation in herpes simplex encephalitis. J Neurol Neurosurg Psychiatry 67:243–245CrossRefPubMedGoogle Scholar
  7. 7.
    Mendichovszky IA, Marks SD, Simcock CM et al (2008) Gadolinium and nephrogenic systemic fibrosis: time to tighten practice. Pediatr Radiol 38:489–496CrossRefPubMedGoogle Scholar
  8. 8.
    Tong KA, Ashwal S, Obenaus A et al (2008) Susceptibility-weighted MR imaging: a review of clinical applications in children. AJNR 29:9–17CrossRefPubMedGoogle Scholar
  9. 9.
    Lequin MH, Dudink J, Tong KA et al (2009) Magnetic resonance imaging in neonatal stroke. Semin Fetal Neonatal Med 14:299–310CrossRefPubMedGoogle Scholar
  10. 10.
    Ramenghi LA, Govaert P, Fumagalli M et al (2009) Neonatal cerebral sinovenous thrombosis. Semin Fetal Neonatal Med 14:278–283CrossRefPubMedGoogle Scholar
  11. 11.
    Wu Z, Mittal S, Kish K et al (2009) Identification of calcification with MRI using susceptibility-weighted imaging: a case study. J Magn Reson Imaging 29:177–182CrossRefPubMedGoogle Scholar
  12. 12.
    Malamateniou C, Adams ME, Srinivasan L (2009) The anatomic variations of the circle of Willis in preterm-at-term and term-born infants: an MR angiography study at 3T. AJNR 30:1955–1962CrossRefPubMedGoogle Scholar
  13. 13.
    Thayyil S, Chandrasekaran M, Taylor A et al (2010) Cerebral magnetic resonance biomarkers in neonatal encephalopathy: a meta-analysis. Pediatrics 125:e382–395CrossRefPubMedGoogle Scholar
  14. 14.
    Shah DK, Tingay DG, Fink AM et al (2005) Magnetic resonance imaging in neonatal nonketotic hyperglycinemia. Pediatr Neurol 33:50–52CrossRefPubMedGoogle Scholar
  15. 15.
    Laswad T, Wintermark P, Alamo L et al (2009) Method for performing cerebral perfusion-weighted MRI in neonates. Pediatr Radiol 39:260–264CrossRefPubMedGoogle Scholar
  16. 16.
    Miranda MJ, Olofsson K, Sidaros K (2006) Noninvasive measurements of regional cerebral perfusion in preterm and term neonates by magnetic resonance arterial spin labeling. Pediatr Res 60:359–363CrossRefPubMedGoogle Scholar
  17. 17.
    Rutherford M, Counsell S, Allsop J et al (2004) Diffusion weighted MR imaging in term perinatal brain injury: a comparison with site of lesion and time from birth. Pediatrics 114:1004–1014CrossRefPubMedGoogle Scholar
  18. 18.
    Bartha AI, Yap KR, Miller SP et al (2007) The normal neonatal brain: MR imaging, diffusion tensor imaging, and 3D MR spectroscopy in healthy term neonates. AJNR 28:1015–1021CrossRefPubMedGoogle Scholar
  19. 19.
    Barkovich AJ, Miller SP, Bartha A et al (2006) MR imaging, MR spectroscopy, and diffusion tensor imaging of sequential studies in neonates with encephalopathy. AJNR 27:533–547PubMedGoogle Scholar
  20. 20.
    Ward P, Counsell S, Allsop J et al (2006) Reduced fractional anisotropy on diffusion tensor magnetic resonance imaging after hypoxic-ischemic encephalopathy. Pediatrics 117:e619–30CrossRefPubMedGoogle Scholar
  21. 21.
    Mercuri E, Cowan F, Rutherford M et al (1995) Ischaemic and haemorrhagic brain lesions in newborns with seizures and normal Apgar scores. Arch Dis Child Fetal Neonatal Ed 73:F67–74CrossRefPubMedGoogle Scholar
  22. 22.
    Mercuri E, Rutherford M, Barnett A et al (2002) MRI lesions and infants with neonatal encephalopathy. Is the Apgar score predictive? Neuropediatrics 33:150–156CrossRefPubMedGoogle Scholar
  23. 23.
    Cowan F, Rutherford M, Groenendaal F et al (2003) Origin and timing of brain lesions in term infants with neonatal encephalopathy. Lancet 361:713–714CrossRefGoogle Scholar
  24. 24.
    Miller SP, Ramaswamy V, Michelson D et al (2005) Patterns of brain injury in term neonatal encephalopathy. J Pediatr 146:453–460CrossRefPubMedGoogle Scholar
  25. 25.
    de Vries LS, Cowan FM (2009) Evolving understanding of hypoxic-ischemic encephalopathy in the term infant. Semin Pediatr Neurol 16:216–225CrossRefPubMedGoogle Scholar
  26. 26.
    Foran A, Cinnante C, Groves AM et al (2009) Patterns of brain injury and outcome in term neonates presenting with postnatal collapse. Arch Dis Child Fetal Neonatal Ed 94:F168–177CrossRefPubMedGoogle Scholar
  27. 27.
    Cheong JL, Cowan FM (2009) Neonatal arterial ischaemic stroke: obstetric issues. Semin Fetal Neonatal Med 14:267–271CrossRefPubMedGoogle Scholar
  28. 28.
    Okereafor A, Allsop J, Counsell SJ et al (2008) Patterns of brain injury in neonates exposed to perinatal sentinel events. Pediatrics 121:906–914CrossRefPubMedGoogle Scholar
  29. 29.
    Logitharajah P, Rutherford M, Cowan F (2009) Hypoxic-ischaemic encephalopathy in the preterm infant: antecedent factors, brain imaging and outcome. Pediatr Res 66:222–229CrossRefPubMedGoogle Scholar
  30. 30.
    Sirgiovanni I, Patel A, Allsop J et al (2010) Patterns of brain injury in neonates presenting with encephalopathy following a history of decreased fetal movements. Abstract 753398, PAS Vancouver May 1–4Google Scholar
  31. 31.
    Burns CM, Rutherford MA, Boardman JP et al (2008) Patterns of cerebral injury and neurodevelopmental outcomes after symptomatic neonatal hypoglycemia. Pediatrics 122:65–74CrossRefPubMedGoogle Scholar
  32. 32.
    Rutherford MA, Pennock JM, Counsell SJ et al (1998) Abnormal magnetic resonance signal in the internal capsule predicts poor neurodevelopmental outcome in infants with hypoxic-ischemic encephalopathy. Pediatrics 102:323–328CrossRefPubMedGoogle Scholar
  33. 33.
    Martinez Biarge M, Diez-Sebastian J, Kapellou O et al (2010) Predicting motor outcome and death in infants with central gray matter damage following hypoxic-ischaemic encephalopathy (HIE). Abstract 754500 PAS Vancouver May 1–4Google Scholar
  34. 34.
    Mercuri E, Ricci D, Cowan F et al (2000) Head growth in infants with hypoxic-ischaemic encephalopathy: Correlation with neonatal magnetic resonance imaging. Pediatrics 106:235–243CrossRefPubMedGoogle Scholar
  35. 35.
    Cowan F, Dubowitz L, Mercuri E et al (2003) White matter injury can lead to cognitive without major motor deficits following perinatal asphyxia and early encephalopathy. Dev Med Child Neurol Suppl 93(45):14Google Scholar
  36. 36.
    Steinman KJ, Gorno-Tempini ML, Glidden DV et al (2009) Neonatal watershed brain injury on magnetic resonance imaging correlates with verbal IQ at 4 years. Pediatrics 123:1025–1030, Erratum in: Pediatrics 123:1611CrossRefPubMedGoogle Scholar
  37. 37.
    Mercuri E, Rutherford M, Cowan F et al (1999) Early prognostic indicators of outcome in infants with neonatal cerebral infarction: a clinical electroencephalogram and magnetic resonance imaging study. Paediatrics 103:39–46CrossRefGoogle Scholar
  38. 38.
    Liauw L, van Wezel-Meijler G, Veen S et al (2009) Do apparent diffusion coefficient measurements predict outcome in children with neonatal hypoxic-ischemic encephalopathy? AJNR 30:264–270CrossRefPubMedGoogle Scholar
  39. 39.
    Vermeulen RJ, van Schie PE, Hendrikx L et al (2008) Diffusion-weighted and conventional MR imaging in neonatal hypoxic ischemia: two-year follow-up study. Radiology 249:631–639CrossRefPubMedGoogle Scholar
  40. 40.
    Nicholl RM, Balasubramaniam VP, Urquhart DS et al (2007) Postmortem brain MRI with selective tissue biopsy as an adjunct to autopsy following neonatal encephalopathy. Eur J Paediatr Neurol 11:167–174CrossRefPubMedGoogle Scholar
  41. 41.
    Roelants-van Rijn AM, Nikkels PG, Groenendaal F et al (2001) Neonatal diffusion weighted imaging: relation with histopathology and follow-up MR examination. Neuropediatrics 32:286–294CrossRefPubMedGoogle Scholar
  42. 42.
    Boardman JP, Counsell SJ, Rueckert D et al (2007) Early growth in brain volume is preserved in majority of preterm infants. Ann Neurol 62:185–182CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Mary Rutherford
    • 1
    Email author
  • Miriam Martinez Biarge
    • 2
  • Joanna Allsop
    • 1
  • Serena Counsell
    • 3
  • Frances Cowan
    • 4
  1. 1.Robert Steiner MR Unit, Perinatal Imaging, MRC Clinical Sciences Centre, Hammersmith HospitalImperial CollegeLondonUK
  2. 2.Dept of NeonatologyLa Paz University HospitalMadridSpain
  3. 3.Robert Steiner MR Unit, Neonatal Medicine, MRC Clinical Sciences Centre, Hammersmith HospitalImperial CollegeLondonUK
  4. 4.Dept of Paediatrics, Hammersmith HospitalImperial CollegeLondonUK

Personalised recommendations