Advertisement

Pediatric Radiology

, Volume 40, Issue 6, pp 844–849 | Cite as

The role of advanced imaging techniques in cystic fibrosis follow-up: is there a place for MRI?

  • Michael PuderbachEmail author
  • Monika Eichinger
Review

Abstract

Cystic fibrosis (CF) lung disease is caused by mutations in the CFTR-gene and remains one of the most frequent lethal inherited diseases in the Caucasian population. Given the progress in CF therapy and the consecutive improvement in prognosis, monitoring of disease progression and effectiveness of therapeutic interventions with repeated imaging of the CF lung plays an increasingly important role. So far, the chest radiograph has been the most widely used imaging modality to monitor morphological changes in the CF lung. CT is the gold standard for assessment of morphological changes of airways and lung parenchyma. Considering the necessity of life-long repeated imaging studies, the cumulative radiation doses reached with CT is problematic for CF patients. A sensitive, non-invasive and quantitative technique without radiation exposure is warranted for monitoring of disease activity. In previous studies, MRI proved to be comparable to CT regarding the detection of morphological changes in the CF lung without using ionising radiation. Furthermore, MRI was shown to be superior to CT regarding assessment of functional changes of the lung. This review presents the typical morphological and functional MR imaging findings with respect to MR-based follow-up of CF lung disease. MRI offers a variety of techniques for morphological and functional imaging of the CF lung. Using this radiation free technique short- and long-term follow-up studies are possible enabling an individualised guidance of the therapy.

Keywords

Lung Cystic fibrosis MRI Monitoring Follow up Child 

References

  1. 1.
    Stern M, Wiedemann B, Wenzlaff P (2008) From registry to quality management: the German Cystic Fibrosis Quality Assessment project 1995 2006. Eur Respir J 31:29–35CrossRefPubMedGoogle Scholar
  2. 2.
    Gibson RL, Burns JL, Ramsey BW (2003) Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 168:918–951CrossRefPubMedGoogle Scholar
  3. 3.
    Terheggen-Lagro S, Truijens N, van Poppel N et al (2003) Correlation of six different cystic fibrosis chest radiograph scoring systems with clinical parameters. Pediatr Pulmonol 35:441–445CrossRefPubMedGoogle Scholar
  4. 4.
    Davis SD, Fordham LA, Brody AS et al (2007) Computed tomography reflects lower airway inflammation and tracks changes in early cystic fibrosis. Am J Respir Crit Care Med 175:943–950CrossRefPubMedGoogle Scholar
  5. 5.
    Davis SD, Brody AS, Emond MJ et al (2007) Endpoints for clinical trials in young children with cystic fibrosis. Proc Am Thorac Soc 4:418–430CrossRefPubMedGoogle Scholar
  6. 6.
    Sly PD, Brennan S, Gangell C et al (2009) Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am J Respir Crit Care Med 180:146–152CrossRefPubMedGoogle Scholar
  7. 7.
    de Jong PA, Nakano Y, Lequin MH et al (2006) Dose reduction for CT in children with cystic fibrosis: is it feasible to reduce the number of images per scan? Pediatr Radiol 36:50–53CrossRefPubMedGoogle Scholar
  8. 8.
    Huda W (2007) Radiation doses and risks in chest computed tomography examinations. Proc Am Thorac Soc 4:316–320CrossRefPubMedGoogle Scholar
  9. 9.
    de Jong PA, Mayo JR, Golmohammadi K et al (2006) Estimation of cancer mortality associated with repetitive computed tomography scanning. Am J Respir Crit Care Med 173:199–203CrossRefPubMedGoogle Scholar
  10. 10.
    Puderbach M, Eichinger M, Gahr J et al (2007) Proton MRI appearance of cystic fibrosis: comparison to CT. Eur Radiol 17:716–724CrossRefPubMedGoogle Scholar
  11. 11.
    Puderbach M, Eichinger M, Haeselbarth J et al (2007) Assessment of morphological MRI for pulmonary changes in cystic fibrosis (CF) patients: comparison to thin-section CT and chest x-ray. Invest Radiol 42:715–725CrossRefPubMedGoogle Scholar
  12. 12.
    Eichinger M, Puderbach M, Fink C et al (2006) Contrast-enhanced 3D MRI of lung perfusion in children with cystic fibrosis-initial results. Eur Radiol 16:2147–2152CrossRefPubMedGoogle Scholar
  13. 13.
    Eibel R, Herzog P, Dietrich O et al (2006) Pulmonary abnormalities in immunocompromised patients: comparative detection with parallel acquisition MR imaging and thin-section helical CT. Radiology 241:880–891CrossRefPubMedGoogle Scholar
  14. 14.
    Rupprecht T, Bowing B, Kuth R et al (2002) Steady-state free precession projection MRI as a potential alternative to the conventional chest X-ray in pediatric patients with suspected pneumonia. Europ Radiol 12:2752–2756Google Scholar
  15. 15.
    Mai VM, Berr SS (1999) MR perfusion imaging of pulmonary parenchyma using pulsed arterial spin labeling techniques: FAIRER and FAIR. J Magn Reson Imaging 9:483–487CrossRefPubMedGoogle Scholar
  16. 16.
    Hatabu H, Gaa J, Kim D et al (1996) Pulmonary perfusion: qualitative assessment with dynamic contrast-enhanced MRI using ultra-short TE and inversion recovery turbo FLASH. Magn Reson Med 36:503–508CrossRefPubMedGoogle Scholar
  17. 17.
    Levin DL, Hatabu H (2004) MR evaluation of pulmonary blood flow. J Thorac Imaging 19:241–249CrossRefPubMedGoogle Scholar
  18. 18.
    Risse F, Eichinger M, Kauczor HU et al (2009) Improved visualization of delayed perfusion in lung MRI. Eur J Radiol Aug 25 [Epub ahead of print]Google Scholar
  19. 19.
    Bauman G, Puderbach M, Deimling M et al (2009) Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI. Magn Reson Med 62:656–664CrossRefPubMedGoogle Scholar
  20. 20.
    Ley S, Puderbach M, Fink C et al (2005) Assessment of hemodynamic changes in the systemic and pulmonary arterial circulation in patients with cystic fibrosis using phase-contrast MRI. Eur Radiol 15:1575–1580CrossRefPubMedGoogle Scholar
  21. 21.
    Edelman RR, Hatabu H, Tadamura E et al (1996) Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced magnetic resonance imaging. Nat Med 2:1236–1239CrossRefPubMedGoogle Scholar
  22. 22.
    Jakob PM, Wang T, Schultz G et al (2004) Assessment of human pulmonary function using oxygen-enhanced T(1) imaging in patients with cystic fibrosis. Magn Reson Med 51:1009–1016CrossRefPubMedGoogle Scholar
  23. 23.
    Keilholz SD, Knight-Scott J, Mata J et al (2002) The contributions of ventilation and perfusion in O2-enhanced pulmonary MR imaging: results form rabbit models of pulmonary embolism and bronchial obstruction. Proc Intl Soc Mag Reson Med 10Google Scholar
  24. 24.
    de Lange EE, Mugler JP 3rd, Brookeman JR et al (1999) Lung air spaces: MR imaging evaluation with hyperpolarized 3He gas. Radiology 210:851–857PubMedGoogle Scholar
  25. 25.
    Kauczor HU, Hofmann D, Kreitner KF et al (1996) Normal and abnormal pulmonary ventilation: visualization at hyperpolarized He-3 MR imaging. Radiology 201:564–568PubMedGoogle Scholar
  26. 26.
    Woodhouse N, Wild JM, Paley MN et al (2005) Combined helium-3/proton magnetic resonance imaging measurement of ventilated lung volumes in smokers compared to never-smokers. J Magn Reson Imaging 21:365–369CrossRefPubMedGoogle Scholar
  27. 27.
    Gast KK, Puderbach MU, Rodriguez I et al (2002) Dynamic ventilation (3)He-magnetic resonance imaging with lung motion correction: gas flow distribution analysis. Invest Radiol 37:126–134CrossRefPubMedGoogle Scholar
  28. 28.
    Salerno M, Altes TA, Brookeman JR et al (2001) Dynamic spiral MRI of pulmonary gas flow using hyperpolarized (3)He: preliminary studies in healthy and diseased lungs. Magn Reson Med 46:667–677CrossRefPubMedGoogle Scholar
  29. 29.
    Eberle B, Weiler N, Markstaller K et al (1999) Analysis of intrapulmonary O-2 concentration by MR imaging of inhaled hyperpolarized helium-3. J Appl Physiol 87:2043–2052PubMedGoogle Scholar
  30. 30.
    Lehmann F, Eberle B, Markstaller K et al (2004) A software program for quantitative analysis of alveolar oxygen partial pressure (p(A)O(2)) with oxygen-sensitive (3)He-MRI. Rofo 176:1390–1398PubMedGoogle Scholar
  31. 31.
    Morbach AE, Gast KK, Schmiedeskamp J et al (2005) Diffusion-weighted MRI of the lung with hyperpolarized helium-3: a study of reproducibility. J Magn Reson Imaging 21:765–774CrossRefPubMedGoogle Scholar
  32. 32.
    Salerno M, de Lange EE, Altes TA et al (2002) Emphysema: hyperpolarized helium 3 diffusion MR imaging of the lungs compared with spirometric indexes—initial experience. Radiology 222:252–260CrossRefPubMedGoogle Scholar
  33. 33.
    Altes TA, Rehm PK, Harrell F et al (2004) Ventilation imaging of the lung: comparison of hyperpolarized helium-3 MR imaging with Xe-133 scintigraphy. Acad Radiol 11:729–734CrossRefPubMedGoogle Scholar
  34. 34.
    Altes T, Mata J, Froh D et al (2006) Abnormalities of lung structure in children with bronchopulmonary dysplasia as assessed by diffusion hyperpolarized helium-3 MRI. Presented at ISMRM 2006, SeattleGoogle Scholar
  35. 35.
    Mentore K, Froh DK, de Lange EE et al (2005) Hyperpolarized HHe 3 MRI of the lung in cystic fibrosis: assessment at baseline and after bronchodilator and airway clearance treatment. Acad Radiol 12:1423–1429CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of RadiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations