Skip to main content
Log in

The dentate nucleus in children: normal development and patterns of disease

  • Pictorial Essay
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

The dentate nuclei lie deep within the cerebellum and play a vital role in the pathways involved in fine motor control and coordination. They are susceptible to a variety of diseases. Some pathological processes preferentially affect the dentate nuclei, while concomitant basal ganglia or white matter involvement can be a striking finding in others. A familiarity with the normal appearance of the dentate nuclei at different ages in combination with the radiological distribution of pathology in the brain allows the paediatric radiologist to develop a logical approach to the interpretation of MR imaging of these deep cerebellar nuclei. In this article we review the normal appearance and MR features of the dentate nuclei, including changes that are seen with myelination. We describe the specific imaging characteristics of childhood diseases that involve the dentate nuclei, and develop a systematic approach to the differential diagnosis of dentate nucleus abnormalities on MR imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Barkovich AJ (1998) MR of the normal neonatal brain: assessment of deep structures. AJNR 19:1397–1403

    CAS  PubMed  Google Scholar 

  2. Kizildag B, Dusunceli E, Fitoz S et al (2005) The role of classic spin echo and FLAIR sequences for the evaluation of myelination in MR imaging. Diagn Interv Radiol 11:130–136

    PubMed  Google Scholar 

  3. Valanne L, Ketonen L, Majander A et al (1998) Neuroradiologic findings in children with mitochondrial disorders. AJNR 19:369–377

    CAS  PubMed  Google Scholar 

  4. Hendriksz CJ (2009) Inborn errors of metabolism for the diagnostic radiologist. Pediatr Radiol 39:211–220

    Article  PubMed  Google Scholar 

  5. Finsterer J (2008) Leigh and Leigh-like syndrome in children and adults. Pediatr Neurol 39:223–235

    Article  PubMed  Google Scholar 

  6. Lee HF, Tsai CR, Chi CS et al (2009) Leigh syndrome: clinical and neuroimaging follow-up. Pediatr Neurol 40:88–93

    Article  PubMed  Google Scholar 

  7. Rossi A, Biancheri R, Bruno C et al (2003) Leigh Syndrome with COX Deficiency and SURF-1 gene mutations: MR imaging findings. AJNR 24:1188–1191

    PubMed  Google Scholar 

  8. Twomey EL, Naughten ER, Donoghue VB et al (2003) Neuroimaging findings in glutaric aciduria type 1. Pediatr Radiol 33:823–830

    Article  PubMed  Google Scholar 

  9. Oguz KK, Ozturk A, Cila A (2005) Diffusion-weighted MR imaging and MR spectroscopy in glutaric aciduria type 1. Neuroradiology 47:229–234

    Article  CAS  PubMed  Google Scholar 

  10. Takanashi J, Fujii K, Sugita K et al (1999) Neuroradiologic findings in glutaric aciduria type II. Pediatr Neurol 20:142–145

    Article  CAS  PubMed  Google Scholar 

  11. Topçu M, Erdem G, Saatçi I et al (1996) Clinical and magnetic resonance imaging features of L-2-hydroxyglutaric acidemia: report of three cases in comparison with Canavan disease. J Child Neurol 11:373–377

    Article  PubMed  Google Scholar 

  12. Kara S, Sherr EH, Barkovich AJ (2008) Dilated perivascular spaces: an informative radiologic finding in Sanfilippo syndrome type A. Pediatr Neurol 38:363–366

    Article  PubMed  Google Scholar 

  13. Aicardi J, Goutières F (1984) A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann Neurol 15:49–54

    Article  CAS  PubMed  Google Scholar 

  14. Uggetti C, La Piana R, Orcesi S et al (2009) Aicardi-Goutières syndrome: neuroradiologic findings and follow-up. AJNR 30:1971–1976

    CAS  PubMed  Google Scholar 

  15. Choksi V, Hoeffner E, Karaarslan E et al (2003) Infantile Refsum disease: case report. AJNR 24:2082–2084

    PubMed  Google Scholar 

  16. Di Rocco M, Biancheri R, Rossi A et al (2004) MRI in acute intermittent maple syrup urine disease. Neurology 63:1078

    PubMed  Google Scholar 

  17. Patay Z (2005) Diffusion-weighted MR imaging in leukodystrophies. Eur Radiol 15:2284–2303

    Article  PubMed  Google Scholar 

  18. Provenzale JM, Peddi S, Kurtzberg J et al (2009) Correlation of neurodevelopmental features and MRI findings in infantile Krabbe’s disease. AJR 192:59–65

    Article  PubMed  Google Scholar 

  19. Nagar VA, Ursekar MA, Krishnan P et al (2006) Krabbe disease: unusual MRI findings. Pediatr Radiol 36:61–64

    Article  PubMed  Google Scholar 

  20. Sener RN (2000) van der Knapp syndrome: MR imaging findings including FLAIR, diffusion imaging and proton MR spectroscopy. Eur Radiol 10:1452–1455

    Article  CAS  PubMed  Google Scholar 

  21. van der Knaap MS, Smit LM, Barth PG et al (1997) Magnetic resonance imaging in classification of congenital muscular dystrophies with brain abnormalities. Ann Neurol 42:50–59

    Article  PubMed  Google Scholar 

  22. Fulham MJ, Brooks RA, Hallett M et al (1992) Cerebellar diaschisis revisited: pontine hypometabolism and dentate sparing. Neurology 42:2267–2273

    CAS  PubMed  Google Scholar 

  23. Huang BY, Castillo M (2008) Hypoxic-ischemic brain injury: imaging findings from birth to adulthood. Radiographics 28:417–439

    Article  PubMed  Google Scholar 

  24. Baker LL, Stevenson DK, Enzmann DR (1988) End-stage periventricular leucomalacia: MR evaluation. Radiology 168:809–815

    CAS  PubMed  Google Scholar 

  25. Baskin HJ, Hedlund G (2007) Neuroimaging of herpes infections in children. Pediatr Radiol 37:949–963

    Article  PubMed  Google Scholar 

  26. Montenegro MA, Santos SL, Li LM et al (2002) Neuroimaging of acute cerebellitis. J Neuroimaging 12:72–74

    Article  PubMed  Google Scholar 

  27. Prayer D, Grois N, Prosch H et al (2004) MR imaging presentation of intracranial disease associated with Langerhans cell histiocytosis. AJNR 25:880–891

    PubMed  Google Scholar 

  28. Martin-Duverneuil N, Idbaih A, Hoang-Xuan K et al (2006) MRI features of neurodegenerative Langerhans cell histiocytosis. Eur Radiol 16:2074–2082

    Article  CAS  PubMed  Google Scholar 

  29. Itoh T, Magnaldi S, White RM et al (1994) Neurofibromatosis type 1: the evolution of deep gray and white matter MR abnormalities. AJNR 15:1513–1519

    CAS  PubMed  Google Scholar 

  30. Herron J, Darrah R, Quaghebeur G (2000) Intra-cranial manifestations of neurocutaneous syndromes. Clin Radiol 55:82–98

    Article  CAS  PubMed  Google Scholar 

  31. Jacques C, Dietemann JL (2005) Imaging features of neurofibromatosis type 1. Neuroradiology 32:180–197

    Article  CAS  Google Scholar 

  32. Griffiths PD, Blaser S, Mukonoweshuro W et al (1999) Neurofibromatosis bright objects in children with Neurofibromatosis type 1: a proliferative potential? Pediatrics 104:e49

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aoife McErlean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McErlean, A., Abdalla, K., Donoghue, V. et al. The dentate nucleus in children: normal development and patterns of disease. Pediatr Radiol 40, 326–339 (2010). https://doi.org/10.1007/s00247-009-1504-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-009-1504-2

Keywords

Navigation