Skip to main content

Advertisement

Log in

Functional MRI in children: clinical and research applications

  • Minisymposium
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Functional MRI has become a critical research tool for evaluating brain function and developmental trajectories in children. Its clinical use in children is becoming more common. This presentation will review the basic underlying physiologic and technical aspects of fMRI, review research applications that have direct clinical relevance, and outline the current clinical uses of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wilke M, Holland SK, Myseros JS et al (2003) Functional magnetic resonance imaging in pediatrics. Neuropediatrics 34:225–233

    CAS  PubMed  Google Scholar 

  2. O’Shaughnessy E, Berl M, Moore E et al (2008) Pediatric functional MRI: issues and applications. J Child Neurol 23:791–801

    PubMed  Google Scholar 

  3. Gaillard WD (2004) Functional MR imaging of language, memory, and sensorimotor cortex. Neuroimag Clin N Am 14:471–485

    Google Scholar 

  4. Ogawa S, Lee T, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14(1):68–78

    CAS  PubMed  Google Scholar 

  5. Kwong KK, Belliveau JW, Chesler DA et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679

    CAS  PubMed  Google Scholar 

  6. Huettel SA, Song AW, McCarthy G (2004) Chapter 8. Spatial and temporal properties of fMRI. In: Huettel SA, Song AW, McCarthy G (eds) Functional magnetic resonance imaging, 1st edn. Sinauer, Sunderland, pp 185–216

    Google Scholar 

  7. Goebel R (2007) Localization of brain activity using functional magnetic resonance imaging. Chapter 2. In: Stippich C (ed) Clinical functional MRI. Presurgical functional neuroimaging, 1st edn. Springer-Verlag, Germany, pp 9–51

    Google Scholar 

  8. Logothetis NK (2003) The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 23:3963–3971

    CAS  PubMed  Google Scholar 

  9. Kruger G, Kastrup A, Glover GH (2001) Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 45:595–604

    CAS  PubMed  Google Scholar 

  10. Voss HU, Zevin JD, McCandliss BD (2006) Functional MR imaging at 3.0 T versus 1.5 T: a practical review. Neuroimag Clin N Am 16:285–297

    Google Scholar 

  11. Zaremba LA (2003) Guidance for industry and FDA staff: criteria for significant risk investigations of magnetic resonance diagnostic devices. U.S. Dept. of health and human services. Food and drug admin. Center for devices and radiological health. Available via http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm072686.htm. Accessed 5 June 2009

  12. Bandettini P, Jesmanowicz E, Wong E et al (1993) Processing strategies for time course data sets in functional MRI of the human brain. Magn Reson Med 30:161–173

    CAS  PubMed  Google Scholar 

  13. Birn RM, Bandettini PA, Cox RW et al (1999) Event-related fMRI of tasks involving brief motion. Hum Brain Mapp 7:106–114

    CAS  PubMed  Google Scholar 

  14. Bandettini PA, Cox RW (2000) Event-related fMRI contrast when using constant interstimulus interval: theory and experiment. Magn Reson Med 43:540–548

    CAS  PubMed  Google Scholar 

  15. Hartnick CJ, Schmithorst V, Rudolph C et al (2001) Functional magnetic resonance imaging of the pediatric swallow: imaging the cortex and the brainstem. Laryngoscope 111:1183–1191

    CAS  PubMed  Google Scholar 

  16. Patel AM, Cahill LD, Ret J et al (2007) Functional magnetic resonance imaging of hearing-impaired children under sedation before cochlear implantation. Arch Otolaryngol Head Neck Surg 133:677–683

    PubMed  Google Scholar 

  17. Binder JR, Swanson SJ, Hammeke TA et al (2008) A comparison of five fMRI protocols for mapping speech comprehension systems. Epilepsia 49:1980–1997

    PubMed  Google Scholar 

  18. Holland SK, Vannest J, Mecoli M et al (2007) Functional MRI of language lateralization during development in children. Int J Audiol 46:533–551

    PubMed  Google Scholar 

  19. Byars AW, Holland SK, Strawsburg RH et al (2002) Practical aspects of conducting large scale functional magnetic resonance image studies in children. J Child Neurol 17:885–889

    PubMed  Google Scholar 

  20. Kotsoni E, Byrd D, Casey BJ (2006) Special considerations for functional magnetic resonance imaging of pediatric populations. J Magn Reson Imaging 23:877–886

    PubMed  Google Scholar 

  21. Szaflarski JP, Holland SK, Jacola LM et al (2008) Comprehensive presurgical functional MRI language evaluation in adult patients with epilepsy. Epilepsy Behav 12:74–83

    PubMed  Google Scholar 

  22. Loring DW, Meador KJ, Allison JD et al (2002) Now you see it, now you don't: statistical and methodological considerations in fMRI. Epilepsy Behav 3:539–547

    PubMed  Google Scholar 

  23. Marchini J, Presanis A (2004) Comparing methods of analyzing fMRI statistical parametric maps. Neuroimage 22:1203–1213

    PubMed  Google Scholar 

  24. Friston K, Jezzard P, Turner R (1998) Analysis of functional MRI time series. Hum Brain Mapp 6:283–300

    Google Scholar 

  25. Xiong J, Gao J-H, Lancaster JL et al (1995) Clustered pixels analysis for functional MRI activation studies of the human brain. Hum Brain Mapp 3:287–301

    Google Scholar 

  26. Gaillard WD, Grandin CB, Xu B (2001) Developmental aspects of pediatric fMRI: considerations for image acquisition, analysis, and interpretation. Neuroimage 13:239–249

    CAS  PubMed  Google Scholar 

  27. Peck KK (2008) Methods of analysis. Chapter 3. In: Holodny A (ed) Functional neuroimaging. A clinical approach. Informa Healthcare, NY, pp 23–35

    Google Scholar 

  28. Chugani HT, Phelps ME, Mazziotta JC (1987) Positron emission tomography study of human brain functional development. Ann Neurol 22:487–497

    CAS  PubMed  Google Scholar 

  29. Oski FA, Brugnara C, Nathan DG (1998) A diagnostic approach to the anemic patient. In: Nathan DG, Orkin SH (eds) Nathan and Oski’s hematology of infancy and childhood. Saunders, Philadelphia, pp 3375–3376

    Google Scholar 

  30. Levin JM, Frederick B, Ross MH et al (2001) Influence of baseline hematocrit and hemodilution on BOLD fMRI activation. Magn Reson Imaging 19:1055–1062

    CAS  PubMed  Google Scholar 

  31. Chiang LK, Dunn AE (2000) Cardiology. In: Siberry GK, Iannone R (eds) The Harriet Lane handbook: a manual for pediatric house officers. Mosby, St. Louis, pp 175–178

    Google Scholar 

  32. Schlaggar BL, Brown TT, Lugar HM et al (2002) Functional neuroanatomical differences between adults and school aged children in the processing of single words. Science 296:1476–1479

    CAS  PubMed  Google Scholar 

  33. Brauer J, Neumann J, Friederici AD (2008) Temporal dynamics of perisylvian activation during language processing in children and adults. Neuroimage 41:1484–1492

    PubMed  Google Scholar 

  34. Heep A, Scheef L, Janowski J et al (2009) Functional magnetic resonance imaging of the sensorimotor system in preterm infants. Pediatrics 123:294–300

    PubMed  Google Scholar 

  35. Morita T, Kochiyama T, Yamada H et al (2000) Difference in the metabolic response of the lateral geniculate nucleus and the primary visual cortex of infants: an fMRI study. Neurosci Res 38:63–70

    CAS  PubMed  Google Scholar 

  36. Born AO, Rostrup E, Miranda MJ et al (2002) Visual cortex reactivity is sedated children examined with perfusion MRI (FAIR). Magn Reson Imaging 20:199–205

    CAS  PubMed  Google Scholar 

  37. Altman NR, Bernal B (2006) Pediatric applications of fMRI. Chapter 15. In: Faro S, Mohamed FB (eds) Functional MRI. Basic principles and clinical applications. Springer Science + Business Media, New York, pp 394–428

    Google Scholar 

  38. Yuan W, Altaye M, Ret J et al (2009) Quantification of head motion in children during various fMRI language tasks. Hum Brain Mapp 30:1481–1489

    PubMed  Google Scholar 

  39. Kesavadas C, Thomas B, Sujesh S et al (2007) Real-time functional MRI (fMRI) for presurgical evaluation of pediatric epilepsy. Pediatr Radiol 37:964–974

    PubMed  Google Scholar 

  40. Seyffert M, Castellanos FX (2005) Functional MRI in pediatric neurobehavioral disorders. Int Rev Neurobiol 67:239–284

    PubMed  Google Scholar 

  41. Kelly AM, Margulies DS, Castellanos FX (2007) Recent advances in structural and functional brain imaging studies of attention –deficit/hyperactivity disorder. Curr Psych Report 9:401–407

    Google Scholar 

  42. Moses P, Roe K, Buxton RB et al (2002) Functional MRI of global and local processing in children. Neuroimage 16:415–424

    PubMed  Google Scholar 

  43. Gathers AD, Bhatt R, Corbly CR et al (2004) Developmental shifts in cortical loci for face and object recognition. Neuroreport 15:1549–1553

    CAS  PubMed  Google Scholar 

  44. Dronkers NF, Wilkins DP, Van Valin RD Jr (2004) Lesion analysis of the brain areas involved in language comprehension. Cognition 92:145–177

    PubMed  Google Scholar 

  45. Falzi G, Perrone P, Vignolo LA (1982) Right-left assymetry in anterior speech region. Arch Neurol 39:239–240

    CAS  PubMed  Google Scholar 

  46. Levistsky W, Geschwind N (1968) Asymmetries of the right and left hemisphere in man. Trans Am Neurol Assoc 93:232–233

    Google Scholar 

  47. Catani M, Jones DK, ffytche DH et al (2005) Perisylvian language networks of the human brain. Ann Neurol 57:8–16

    PubMed  Google Scholar 

  48. Chi JG, Dooling EC, Gilles FH (1977) Left-right asymmetries of the temporal speech areas of the human fetus. Arch Neurol 34:346–348

    CAS  PubMed  Google Scholar 

  49. Foundas AL, Leonard CM, Gilmore RL et al (1996) Pars triangularis assymetry and language dominance. Proc Natl Acad Sci USA 93:719–722

    CAS  PubMed  Google Scholar 

  50. Dehaene-Lambertz G, Dahaene S, Hertz-Pannier L (2002) Functional neuroimaging of speech perception in infants. Science 298:2013–2015

    CAS  PubMed  Google Scholar 

  51. Jardri R, Pins D, Houfflin-Debarge V et al (2008) Fetal cortical activation to sound at 33 weeks of gestation: a functional MRI study. Neuroimage 42:10–18

    PubMed  Google Scholar 

  52. Szaflarski JP, Binder JR, Possing ET (2002) Language lateralization in left-handed and ambidextrous people. fMRI data. Neurology 59:238–244

    CAS  PubMed  Google Scholar 

  53. Bates E, Roe K (2001) Language development in children with unilateral brain injury. Chapter 20. In: Nelson CA, Lucina M (eds) Handbook of developmental cognitive neuroscience. MIT, Cambridge, pp 281–308

    Google Scholar 

  54. Vardha-Khadem F, O’Gorman A, Watters G (1985) Aphasia and handedness in relation to hemispheric side, age at injury, and severity of cerebral lesion during childhood. Brain 108:677–696

    Google Scholar 

  55. Holland SK, Plante E, Byars AW et al (2001) Normal fMRI brain activation patterns in children performing a verb generation task. Neuroimage 14:837–843

    CAS  PubMed  Google Scholar 

  56. Petersen SE, Fox PT, Posner MI et al (1988) Positron emission tomography studies of the cortical anatomy of single-word processing. Nature 331:585–586

    CAS  PubMed  Google Scholar 

  57. Benson RR, Kwong KK, Buchbinder BR et al (1994) Noninvasive evaluation of language dominance using functional MRI. Proc Soc Magn Reson 2:684

    Google Scholar 

  58. Hertz-Pannier L, Gaillard WD, Mott SH et al (1997) Noninvasive assessment of language dominance in children and adolescents with functional MRI: a preliminary study. Neurology 48:1003–1012

    CAS  PubMed  Google Scholar 

  59. Schapiro MB, Schmithorst VJ, Wilke M et al (2004) BOLD-fMRI signal increases with age in selected brain regions in children. Neuroreport 315:2575–2578

    Google Scholar 

  60. Szaflarski JP, Schmithorst VJ, Altaye M et al (2006) A longitudinal fMRI study of language development in children age 5 to 11. Ann Neurol 59:796–807

    PubMed  Google Scholar 

  61. Brown TT, Lugar HM, Coalson RS et al (2005) Developmental changes in human cerebral functional organization for word generation. Cereb Cortex 15:275–290

    PubMed  Google Scholar 

  62. Gaillard WD, Hertz-Pannier L, Mott SH et al (2000) Functional anatomy of cognitive development: fMRI of verbal fluency in children and adults. Neurology 54:180–185

    CAS  PubMed  Google Scholar 

  63. Gaillard WD, Balsamo LM, Ibrahim Z et al (2003) fMRI identifies regional specialization of neural networks for reading in young children. Neurology 60:94–100

    CAS  PubMed  Google Scholar 

  64. Vannest J, Karunanayaka PR, Schmithorst VJ et al (2009) Language networks in children: evidence from functional MRI studies. AJR 192:1190–1196

    PubMed  Google Scholar 

  65. Schmithorst VJ, Holland SK, Plante E (2007) Object identification and lexical/semantic access in children: a functional magnetic resonance imaging study of word picture matching. Hum Brain Mapp 28:1060–1074

    PubMed  Google Scholar 

  66. Schmithorst VJ, Holland SK, Plante E (2006) Cognitive modules utilized for narrative comprehension in children: a functional magnetic resonance imaging study. Neuroimage 29:254–266

    PubMed  Google Scholar 

  67. Karunanayaka PR, Holland SK, Schmithorst VJ et al (2007) Age related connectivity changes in fMRI data from children listening to stories. Neuroimage 34:349–360

    PubMed  Google Scholar 

  68. Schmithorst VJ, Holland SK (2007) Sex differences in the development of neuroanatomical functional connectivity underlying intelligence found using Bayesian connectivity analysis. Neuroimage 35:406–419

    PubMed  Google Scholar 

  69. Karunanayaka P, Schmithorst VJ, Vannest J et al (2009) A group independent component analysis of covert verb generation in children: a functional magnetic resonance imaging study. Neuroimage, in press

  70. Liu Y, Yang T, Yang X et al (2008) EEG-fMRI study of the intertical epileptic activity in patients with partial epilepsy. J Neurol Sci 268:117–123

    PubMed  Google Scholar 

  71. Liegois F, Cross HJ, Gadian DG et al (2006) Role of fMRI in the decision-making process: epilepsy surgery for children. J Magn Reson 23:933–940

    Google Scholar 

  72. Stippich C, Blatow M, Krakow K (2007) Presurgical functional MRI in patients with brain tumors. Chapter 4. In: Stippich C (ed) Clinical functional MRI. Presurgical functional neuroimaging. Springer-Verlag, Berlin, pp 87–134

    Google Scholar 

  73. Ulmer JL, Hacein-Bev L, Matthews VP et al (2004) Lesion-induced pseudo-dominance at functional magnetic resonance imaging: implications for preoperative assessments. Neurosurgery 55:569–579

    PubMed  Google Scholar 

  74. Rossini PM, Altamura C, Ferretti A et al (2004) Does cerebrovascular disease affect the coupling between neuronal activity and local haemodynamics? Brain 127:99–110

    CAS  PubMed  Google Scholar 

  75. Kamba M, Sung Y-W, Ogawa S (2007) Alteration of blood oxygen level-dependent signaling by local circulatory condition. J Magn Reson Imaging 26:1506–1513

    PubMed  Google Scholar 

  76. Roessler K, Donat M, Lanzenberger R (2005) Evaluation of preoperative high magnetic field motor functional MRI (3 Tesla) in glioma patients by navigated electrocortical stimulation and postoperative outcome. J Neurol Neurosurg Psychiatry 76:1152–1157

    CAS  PubMed  Google Scholar 

  77. Pujol J, Deus J, Acebes JJ et al (2008) Identification of the sensorimotor cortex with functional MRI: frequency and actual contribution in a neurosurgical context. J Neuroimag 18:28–33

    Google Scholar 

  78. Guzzetta A, Staudt M, Petacchi E et al (2007) Brain representation of active and passive hand movements in children. Pediatric Res 61:485–490

    Google Scholar 

  79. Gasser TG, Sandalcioglu EI, Wiedemayaer H et al (2004) A novel passive functional MRI paradigm for preoperative identification of the somatosensory cortex. Neurosug Rev 27:106–112

    Google Scholar 

  80. Souweidane MM, Kim KHS, McDowall R et al (1999) Brain mapping in sedated infants and young children with passive functional magnetic resonance imaging. Pediatr Neurosurg 30:86–92

    CAS  PubMed  Google Scholar 

  81. Gasser TG, Sandalcioglu EI, Schoch B et al (2005) Functional magnetic resonance imaging in anesthetized patients: a relevant step toward real-time intraoperative functional neuroimaging. Neurosurgery 57:94–99 disc 94–99

    PubMed  Google Scholar 

  82. Golaszewski SM, Siedentopf CM, Koppelstaetter F et al (2004) Modulatory effects on human sensorimotor cortex by whole-hand afferent electrical stimulation. Neurology 62:2262–2269

    CAS  PubMed  Google Scholar 

  83. Spiegel J, Tintera J, Gawehn J et al (1999) Functional MRI of human primary somatosensory and motor cortex during median nerve stimulation. Clin Neurophysiol 110:47–52

    CAS  PubMed  Google Scholar 

  84. Stippich C, Romanowski A, Nennig E et al (2004) Fully automated localization of the human primary somatosensory cortex in one minute by functional magnetic resonance imaging. Neurosci Lett 364:90–93

    CAS  PubMed  Google Scholar 

  85. Lee CC, Jack CR, Riederer SJ (1998) Mapping of the central sulcus with functional MR: active versus passive activation tasks. AJNR 19:847–852

    CAS  PubMed  Google Scholar 

  86. Yetkin FZ, Mueller WM, Morris GL et al (1997) Functional MR activation correlated with intraoperative cortical mapping. AJNR 18:1311–1315

    CAS  PubMed  Google Scholar 

  87. Lehericy S, Duffau H, Cornu P et al (2000) Correspondence between functional magnetic resonance imaging somatotopy and individual brain anatomy of the central region: comparison with intraoperative stimulation in patients with brain tumors. J Neurosurg 92:589–598

    CAS  PubMed  Google Scholar 

  88. Shinoura N, Yamada R, Kodama T et al (2005) Intraoperative cortical mapping has low sensitivity for the detection of motor function in the proximity to a tumor in the primary motor area. Stereotact Funct Neurosurg 83:135–141

    CAS  PubMed  Google Scholar 

  89. Krishnan R, Raabe A, Hattingen E et al (2004) Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion to motor cortex distance and outcome. Neurosurgery 55:904–915

    PubMed  Google Scholar 

  90. Nelson L, Lapsiwala S, Haughton VM et al (2002) Preoperative mapping of the supplementary motor area in patients harboring tumors in the medial frontal lobe. J Neurosurg 97:1108–1114

    PubMed  Google Scholar 

  91. De Tiège X, Connelly A, Liégeois F et al (2009) Influence of motor functional magnetic resonance imaging on the surgical management of children and adolescents with symptomatic focal epilepsy. Neurosurgery 64:856–864

    PubMed  Google Scholar 

  92. Wilke M, Lidzba K, Staudt M et al (2006) An fMRI task battery for assessing hemispheric language dominance in children. Neuroimage 32:400–410

    PubMed  Google Scholar 

  93. Gaillard WD, Balsamo L, Xu B et al (2004) fMRI language task panel improves determination of language dominance. Neurology 63:1403–1408

    CAS  PubMed  Google Scholar 

  94. Szaflarski JP, Holland SK, Schmithorst VJ et al (2006) An fMRI study of language lateralization in children and adults. Hum Brain Mapp 27:202–212

    PubMed  Google Scholar 

  95. Binder JR, Frost JA, Hammeke TA et al (1997) Human brain language areas identified by functional magnetic resonance imaging. J Neurosci 17:353–362

    CAS  PubMed  Google Scholar 

  96. Balsamo LM, Xu B, Grandin CB et al (2002) A functional magnetic resonance imaging study of left hemispheric dominance in children. Arch Neurol 59:1168–1174

    PubMed  Google Scholar 

  97. Ahmad Z, Balsamo LM, Sachs BC et al (2003) Auditory comprehension of language in young children. Neural networks identified with fMRI. Neurology 60:1598–1605

    CAS  PubMed  Google Scholar 

  98. Gaillard WD, Pugilese M, Grandin CB et al (2001) Cortical localization of reading in normal children. An fMRI language study. Neurology 57:47–54

    CAS  PubMed  Google Scholar 

  99. Gaillard WD, Balsamo MA, Xu B et al (2002) Language dominance in partial epilepsy patients identified with an fMRI reading task. Neurology 59:256–265

    CAS  PubMed  Google Scholar 

  100. Wellmer J, Weber B, Weis S et al (2008) Strongly lateralized activation in language fMRI of atypical dominant patients — implications for presurgical work-up. Epilepsy Res 80:67–76

    PubMed  Google Scholar 

  101. Ruff IM, Petrovich Brennan NM, Peck KK et al (2008) Assessment of the language laterality index in patients with brain tumor using functional MR imaging: effects of thresholding, task selection, and prior surgery. AJNR 29:528–535

    CAS  PubMed  Google Scholar 

  102. Rutten GJ, Ramsey NF, van Rijen PC et al (2002) Reproducibility of fMRI-determined language lateralization in individual subjects. Brain Lang 80:421–437

    CAS  PubMed  Google Scholar 

  103. Arora J, Pugh K, Westerveld M et al (2009) Language lateralization in epilepsy patients: fMRI validated with the Wada procedure. Epilepsia, epub ahead of print. doi:10.1111/j.1528-1167.2009.0213.x

  104. Yuan W, Szaflarski JP, Schmithorst VJ et al (2006) fMRI shows atypical language lateralization in pediatric epilepsy patients. Epilepsia 47:593–600

    PubMed  Google Scholar 

  105. Wilke M, Schmithorst VJ (2006) A combined bootstrap/histogram analysis approach for computing a lateralization index from neuroimaging data. Neuroimage 33:522–530

    PubMed  Google Scholar 

  106. Woerman FG, Joeckert H, Luerding R et al (2003) Language lateralization by the Wada test and fMRI in 100 patients with epilepsy. Neurology 61:699–701

    Google Scholar 

  107. Tillema J-M, Byars AW, Jacola LM et al (2008) Cortical reorganization of language functioning following perinatal left MCA stroke. Brain & Lang 105:99–111

    Google Scholar 

  108. Staudt M, Grodd W, Niemann G et al (2001) Early left periventricular brain lesions induce right hemispheric organization of speech. Neurology 57:122–125

    CAS  PubMed  Google Scholar 

  109. Moddel G, Lineweaver T, Schuele SU et al (2009) Atypical language lateralization in epilepsy patients. Epilepsia, epub ahead of print. doi:10.1111/j.1528-1167.2008.02000.x

  110. Schevon CA, Carlson C, Zaroff CM et al (2007) Pediatric language mapping: sensitivity of neurostimulation and Wada testing in epilepsy surgery. Epilepsia 48:539–545

    PubMed  Google Scholar 

  111. Baxendale SA, Thompson PJ, Duncan JS (2008) Evidence-based practice: a reevaluation of the intracarotid amobarbital procedure (Wada test). Arch Neurol 65:841–845

    PubMed  Google Scholar 

  112. Abou-Khalil B (2007) An update on determination of language dominance in screening for epilepsy surgery: the Wada test and newer non-invasive alternatives. Epilepsia 48:442–455

    PubMed  Google Scholar 

  113. Kloppel S, Buchel C (2005) Alternatives to the Wada test: a critical view of functional magnetic resonance imaging in preoperative use. Curr Opin Neurol 18:418–423

    PubMed  Google Scholar 

  114. Anderson DP, Harvey SA, Saling MM et al (2006) fMRI lateralization of expressive language in children with cerebral lesions. Epilepsia 47:988–1008

    Google Scholar 

  115. Lee D, Swanson SJ, Sabsevitz DS et al (2008) Functional MRI and Wada studies in patients with interhemispheric dissociation of language functions. Epilepsy Behav 13:350–356

    PubMed  Google Scholar 

  116. Sabsevitz DS, Swanson SJ, Hammeke TA et al (2003) Use of preoperative functional neuroimaging to predict language deficits from epilepsy surgery. Neurology 60:1788–1792

    CAS  PubMed  Google Scholar 

  117. Benke T, Koylu B, Visani P et al (2006) Language lateralization in temporal lobe epilepsy: a comparison between fMRI and the Wada test. Epilepsia 47:1308–1319

    PubMed  Google Scholar 

  118. Lehericy S, Chen L, Bazin B et al (2000) Functional MR evaluation of temporal and frontal language dominance compared with the Wada test. Neurology 54:1625–1633

    CAS  PubMed  Google Scholar 

  119. Liegois F, Cross HJ, Gadian DG et al (2006) Role of fMRI in the decision-making process: epilepsy surgery for children. J Magn Reson 23:933–940

    Google Scholar 

  120. Medina LS, Bernal B, Ruiz J (2007) Role of functional MR in determining language dominance in epilepsy and nonepilepsy populations: a Bayesian analysis. Radiology 242:94–100

    PubMed  Google Scholar 

  121. Paolicchi JM (2008) Is the Wada test still relevant? Yes. Arch Neurol 65:838–840

    PubMed  Google Scholar 

  122. Sanai N, Mirzadeh Z, Berger MS (2008) Functional outcome after language mapping for glioma resection. N Engl J Med 358:18–27

    CAS  PubMed  Google Scholar 

  123. Ojemann JG, Ojemann GA, Lettich E (2002) Cortical stimulation mapping of language cortex by using a verb generation task: effects of learning and comparison to mapping based on object naming. J Neurosurg 97:33–38

    PubMed  Google Scholar 

  124. Smits M, Visch-Brink E, Schraa-Tam C et al (2006) Functional MR imaging of language processing: an overview of easy-to-implement paradigms for patient care and clinical research. Radiographics 26:S145–S158

    PubMed  Google Scholar 

  125. Bizzi A, Blasi V, Falini A et al (2008) Presurgical functional MRI of language and motor functions: validation with intraoperative electrocortical mapping. Radiology 248:579–589

    PubMed  Google Scholar 

  126. Holodny AI, Schulder M, Liu W-C et al (2000) The effect of brain tumors on BOLD functional MR imaging activation in the motor cortex: implications for image-guided neurosurgery. AJNR 21:1415–1422

    CAS  PubMed  Google Scholar 

  127. Hou BL, Bradbury M, Pechk KK et al (2006) Effect of brain tumor neovasculature defined by rCBV on BOLD fMRI activation volume in the primary motor cortex. Neuroimage 32:489–497

    PubMed  Google Scholar 

  128. Szfalrski JP, Holland SK, Schmithorst VJ et al (2004) High resolution functional MRI at 3 T in healthy epilepsy subjects: hippocampal activation with picture encoding task. Epilep & Behav 5:244–252

    Google Scholar 

  129. Rabin ML, Narayan VM, Kimberg DY (2004) Functional MRI predicts post-surgical memory following temporal lobectomy. Brain 127:2286–2298

    PubMed  Google Scholar 

  130. Nimsky C, Ganslandt O, Buchfelder M et al (2006) Intraoperative visualization for resection of gliomas: the role of functional neuronavigation and intraoperative 1.5 T MRI. Neurol Res 28:482–487

    PubMed  Google Scholar 

  131. Kamada K, Sawamura Y, Takeuchi F et al (2007) Expressive and receptive language areas determined by a non-invasive reliable method using functional magnetic resonance imaging and magnetoencephalography. Neurosurgery 60:296–306

    PubMed  Google Scholar 

  132. Stapleton SR, Kiriakopoulos E, Mikulis D et al (1997) Combined utility of functional MRI, cortical mapping, and frameless stereotaxy in resection of lesions in eloquent areas of brain in children. Pediatr Neurosurg 26:68–82

    CAS  PubMed  Google Scholar 

  133. Current Procedural Terminology (2009) CPT 2009. Professional edition. American medical association, p 306

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Leach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leach, J.L., Holland, S.K. Functional MRI in children: clinical and research applications. Pediatr Radiol 40, 31–49 (2010). https://doi.org/10.1007/s00247-009-1452-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-009-1452-x

Keywords

Navigation