Pediatric Radiology

, Volume 40, Issue 3, pp 284–293 | Cite as

The use of parallel imaging for MRI assessment of knees in children and adolescents

  • Andrea S. DoriaEmail author
  • Gulraiz A. Chaudry
  • Cristina Nasui
  • Tammy Rayner
  • Chenghua Wang
  • Rahim Moineddin
  • Paul S. Babyn
  • Larry M. White
  • Marshall S. Sussman
Original Article



Parallel imaging provides faster scanning at the cost of reduced signal-to-noise ratio (SNR) and increased artifacts.


To compare the diagnostic performance of two parallel MRI protocols (PPs) for assessment of pathologic knees using an 8-channel knee coil (reference standard, conventional protocol [CP]) and to characterize the SNR losses associated with parallel imaging.

Materials and methods

Two radiologists blindly interpreted 1.5 Tesla knee MRI images in 21 children (mean 13 years, range 9–18 years) with clinical indications for an MRI scan. Sagittal proton density, T2-W fat-saturated FSE, axial T2-W fat-saturated FSE, and coronal T1-W (NEX of 1,1,1) images were obtained with both CP and PP. Images were read for soft tissue and osteochondral findings.


There was a 75% decrease in acquisition time using PP in comparison to CP. The CP and PP protocols fell within excellent or upper limits of substantial agreement: CP, kappa coefficient, 0.81 (95% CIs, 0.73–0.89); PP, 0.80–0.81 (0.73–0.89). The sensitivity of the two PPs was similar for assessment of soft (0.98–1.00) and osteochondral (0.89–0.94) tissues. Phantom data indicated an SNR of 1.67, 1.6, and 1.51 (axial, sagittal and coronal planes) between CP and PP scans.


Parallel MRI provides a reliable assessment for pediatric knees in a significantly reduced scan time without affecting the diagnostic performance of MRI.


Knees Children Adolescents MRI 



This study was partially funded by a Canadian Child Health Clinician-Scientist Program Career Development Award to Dr. Andrea S. Doria.


  1. 1.
    Kreitner KF, Romaneehsen B, Krummenauer F et al (2006) Fast magnetic resonance imaging of the knee using a parallel acquisition technique (mSENSE): a prospective performance evaluation. Eur Radiol 16:1659–1666CrossRefPubMedGoogle Scholar
  2. 2.
    Sodickson A (2004) Breaking the magnetic resonance imaging acquisition speed barrier: clinical implications of parallel imaging. Appl Radiol Suppl 33:6–17Google Scholar
  3. 3.
    Pruessmann KP, Weiger M, Scheidegger MB et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefPubMedGoogle Scholar
  4. 4.
    Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603CrossRefPubMedGoogle Scholar
  5. 5.
    Magee T, Shapiro M, Williams D (2004) Usefulness of simultaneous acquisition of spatial harmonics technique for MRI of the knee. AJR 182:1411–1415PubMedGoogle Scholar
  6. 6.
    Heidemann RM, Ozsarlak O, Parizel PM et al (2003) A brief review of parallel magnetic resonance imaging. Eur Radiol 13:2323–2337CrossRefPubMedGoogle Scholar
  7. 7.
    Kwok WE, Zhong J, You Z et al (2003) A four-element phased array coil for high resolution and parallel MR imaging of the knee. Magn Reson Imaging 21:961–967CrossRefPubMedGoogle Scholar
  8. 8.
    Romaneehsen B, Oberholzer K, Müller LP et al (2003) Rapid musculoskeletal magnetic resonance imaging using integrated parallel acquisition techniques (IPAT)–initial experiences. Rofo 175:1193–1197PubMedGoogle Scholar
  9. 9.
    Niitsu M, Ikeda K (2003) Routine MR examination of the knee using parallel imaging. Clin Radiol 58:801–807CrossRefPubMedGoogle Scholar
  10. 10.
    Helms CA (2002) The meniscus: recent advances in MR imaging of the knee. AJR 179:1115–1122PubMedGoogle Scholar
  11. 11.
    Osterle S (2003) Imaging of the knee. Imaging 15:217–241Google Scholar
  12. 12.
    Staebler A, Glaser C, Reiser M (2000) Musculoskeletal MR: knee. Eur Radiol 10:230–241CrossRefGoogle Scholar
  13. 13.
    Rand T, Trattnig S, Male C et al (1999) Magnetic resonance imaging in hemophilic children: value of gradient echo and contrast-enhanced imaging. Magn Reson Imaging 17:199–205CrossRefPubMedGoogle Scholar
  14. 14.
    Winalski CS, Palmer WE, Rosenthal DI et al (1996) Magnetic resonance imaging of rheumatoid arthritis. Radiol Clin North Am 34:243–258PubMedGoogle Scholar
  15. 15.
    Clement JP, Kassarjian A, Palmer WE (2005) Synovial inflammatory processes in the hand. Eur J Radiol 56:307–318CrossRefPubMedGoogle Scholar
  16. 16.
    Berquist TH (1996) Musculoskeletal infection. In: Berquist TH (ed) MRI of the musculoskeletal system, 3rd edn. Lippincott-Raven, New York, pp 841–862Google Scholar
  17. 17.
    Berquist TH (1996) General technical considerations in musculoskeletal MRI. In: Berquist TH (ed) MRI of the musculoskeletal system, 3rd edn. Lippincott-Raven, New York, pp 63–98Google Scholar
  18. 18.
    Sussman M, Robert N, Wright GA (2004) Adaptive averaging for improved SNR in real-time coronary artery MRI. IEEE Trans Med Imaging 23:1034–1045CrossRefPubMedGoogle Scholar
  19. 19.
    Brennan P, Silman A (1992) Statistical methods for assessing observer variability in clinical measures. BMJ 304:1491–1494CrossRefPubMedGoogle Scholar
  20. 20.
    Barnhart HX, Williamson JM (2002) Weighted least-squares approach for comparing correlated kappa. Biometrics 58:1012–1019CrossRefPubMedGoogle Scholar
  21. 21.
    Altman DG (ed) (1991) Practical statistics for medical research. Chapman and Hall, London, pp 404–408Google Scholar
  22. 22.
    Zeger SL, Lian KY (1986) Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42:121–130CrossRefPubMedGoogle Scholar
  23. 23.
    Sackett DL (1979) Bias in analytic research. J Chronic Dis 32:51–63CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Andrea S. Doria
    • 1
    Email author
  • Gulraiz A. Chaudry
    • 2
  • Cristina Nasui
    • 1
  • Tammy Rayner
    • 1
  • Chenghua Wang
    • 1
  • Rahim Moineddin
    • 3
  • Paul S. Babyn
    • 1
  • Larry M. White
    • 4
  • Marshall S. Sussman
    • 5
  1. 1.Department of Diagnostic ImagingTorontoCanada
  2. 2.Department of RadiologyChildren’s HospitalBostonUSA
  3. 3.Department of Public HealthUniversity of TorontoTorontoCanada
  4. 4.Department of Diagnostic ImagingMount Sinai HospitalTorontoCanada
  5. 5.Department of Diagnostic ImagingUniversity Health NetworkTorontoCanada

Personalised recommendations