Skip to main content
Log in

Molecular imaging with positron emission tomography in paediatric oncology—FDG and beyond

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Weissleder R (1999) Molecular imaging: exploring the next frontier. Radiology 212:609–14

    PubMed  CAS  Google Scholar 

  2. Jager PL, de Korte MA, Lub-de Hooge MN et al (2005) Molecular imaging: what can be used today. Cancer Imaging 23;5 Spec No A:S27-32

  3. Yamamoto Y, Nishiyama Y, Ishikawa S et al (2008) 3′-Deoxy-3′-18F-fluorothymidine as a proliferation imaging tracer for diagnosis of lung tumours: comparison with 2-deoxy-2-18f-fluoro-D-glucose. J Comput Assist Tomogr 32:432–437

    Article  PubMed  Google Scholar 

  4. Jager PL, Chirakal R, Marriott CJ et al (2008) 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumours: basic aspects and emerging clinical applications. J Nucl Med 49:573–586

    Article  PubMed  CAS  Google Scholar 

  5. Mohnike K, Blankenstein O, Minn H et al (2008) [18F]-DOPA positron emission tomography for preoperative localization in congenital hyperinsulinism. Horm Res 70:65–72

    Article  PubMed  CAS  Google Scholar 

  6. Beer AJ, Schwaiger M (2008) Imaging of integrin alphavbeta3 expression. Cancer Metastasis Rev 27:631–644

    Article  PubMed  CAS  Google Scholar 

  7. Langen KJ, Eschmann SM (2008) Correlative imaging of hypoxia and angiogenesis in oncology. T Nucl Med 49:515–516

    Article  Google Scholar 

  8. Faust A, Wagner S, Law MP et al (2007) The nonpeptidyl caspase binding radioligand (S)-1-(4-(2-[18F]Fluoroethoxy)-benzyl)-5-[1-(2-methoxymethylpyrrolidinyl) sulfonyl]isatin ([18F]CbR) as potential positron emission tomography-compatible apoptosis imaging agent. Q J Nucl Med Mol Imaging 51:67–73

    PubMed  CAS  Google Scholar 

  9. Körholz D, Kluge R, Wickmann L et al (2003) Importance of F18-fluorodeoxy-D-2-glucose positron emission tomography (FDG-PET) for staging and therapy control of Hodgkin’s lymphoma in childhood and adolescenceconsequences for the GPOH-HD 2003 protocol. Onkologie 26:489–493

    Article  PubMed  Google Scholar 

  10. Gerth HU, Juergens KU, Dirksen U et al (2007) Significant benefit of multimodal imaging: PET/CT compared with PET alone in staging and follow-up of patients with Ewing tumours. J Nucl Med 48:1932–1939

    Article  PubMed  Google Scholar 

  11. Lang K, Kloska S, Straeter R et al (2005) Clinical value of amino acid imaging in paediatric brain tumours: Comparison with MRI. Nuklearmedizin 44:131–136

    PubMed  CAS  Google Scholar 

  12. Langen KJ, Hamacher K, Weckesser M et al (2006) O-(2-[18F]fluoroethyl)-l-tyrosine: Uptake mechanisms and clinical applications. Nucl Med Biol 33:287–294

    Article  PubMed  CAS  Google Scholar 

  13. Weckesser M, Langen KJ, Rickert CH et al (2005) CH O-(2-[(18) F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging 32:422–429

    Article  PubMed  CAS  Google Scholar 

  14. Weckesser M, Matheja P, Rickert CH et al (2001) High uptake of L-3-[123I]iodo-alpha-methyl tyrosine in pilocytic astrocytomas. Eur J Nucl Med 28:273–281

    Article  PubMed  CAS  Google Scholar 

  15. Utriainen M, Metsahonkala L, Salmi TT et al (2002) Metabolic characterisation of childhood brain tumours: Comparison of 18F-fluorodeoxyglucose and 11C-methionine positron emission tomography. Cancer 95:1376–1386

    Article  PubMed  Google Scholar 

  16. Messing-Jünger AM, Floeth FW, Pauleit D et al (2002) Multimodal target point assessment for stereotactic biopsy in children with diffuse bithalamic astrocytomas. Childs Nerv Syst 18:445–449

    Article  PubMed  Google Scholar 

  17. Pirotte B, Goldman S, Van Bogaert P et al (2005) Integration of [11C]methionine-positron emission tomographic and magnetic resonance imaging for image-guided surgical resection of infiltrative low-grade brain tumours in children. Neurosurgery 57(1 Suppl):128–139

    Article  PubMed  Google Scholar 

  18. Frühwald MC, O’Dorisio MS, Pietsch T et al (1999) High expression of somatostatin receptor subtype 2 (sst2) in medulloblastoma: implications for diagnosis and therapy. Pediatr Res 45:697–708

    Article  PubMed  Google Scholar 

  19. O’Dorisio MS, Khanna G, Bushnell D (2008) Combining anatomic and molecularly targeted imaging in the diagnosis and surveillance of embryonal tumours of the nervous and endocrine systems in children. Cancer Metastasis Rev 27:665–677

    Article  PubMed  Google Scholar 

  20. Kowalski J, Henze M, Schuhmacher J et al (2003) Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumours. Mol Imaging Biol 5:42–48

    Google Scholar 

  21. Franzius C, Hermann K, Weckesser M et al (2006) Whole-body PET/CT with 11C-meta-hydroxyephedrine in tumours of the sympathetic nervous system: feasibility study and comparison with 123I-MIBG SPECT/CT. J Nucl Med 47:1635–1642

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Weckesser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weckesser, M. Molecular imaging with positron emission tomography in paediatric oncology—FDG and beyond. Pediatr Radiol 39 (Suppl 3), 450–455 (2009). https://doi.org/10.1007/s00247-009-1231-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-009-1231-8

Navigation