Skip to main content

Advertisement

Log in

Radiation-sensitive genetically susceptible pediatric sub-populations

  • ALARA CONCEPT IN PEDIATRIC IMAGING: ONCOLOGY
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Major advances in pediatric cancer treatment have resulted in substantial improvements in survival. However, concern has emerged about the late effects of cancer therapy, especially radiation-related second cancers. Studies of childhood cancer patients with inherited cancer syndromes can provide insights into the interaction between radiation and genetic susceptibility to multiple cancers. Children with retinoblastoma (Rb), neurofibromatosis type 1 (NF1), Li-Fraumeni syndrome (LFS), and nevoid basal cell carcinoma syndrome (NBCCS) are at substantial risk of developing radiation-related second and third cancers. A radiation dose-response for bone and soft-tissue sarcomas has been observed in hereditary Rb patients, with many of these cancers occurring in the radiation field. Studies of NF1 patients irradiated for optic pathway gliomas have reported increased risks of developing another cancer associated with radiotherapy. High relative risks for second and third cancers were observed for a cohort of 200 LFS family members, especially children, possibly related to radiotherapy. Children with NBCCS are very sensitive to radiation and develop multiple basal cell cancers in irradiated areas. Clinicians following these patients should be aware of their increased genetic susceptibility to multiple primary malignancies enhanced by sensitivity to ionizing radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. National Research Council of the National Academies (2006) Health risks from exposure to low levels of ionizing radiation, BEIR VII Phase 2. National Academies, Washington, DC

    Google Scholar 

  2. Preston D, Cullings H, Suyama A et al (2008) Solid cancer incidence in atomic bomb survivors exposed in utero or as young children. J Natl Cancer Inst 100:428–436

    Article  PubMed  Google Scholar 

  3. Ron E, Modan B, Boice JD Jr et al (1988) Tumors of the brain and nervous system after radiotherapy in childhood. N Engl J Med 319:1033–1039

    PubMed  CAS  Google Scholar 

  4. Lundell M, Holm LE (1996) Mortality from leukemia after irradiation in infancy for skin hemangioma. Radiat Res 145:595–601

    Article  PubMed  CAS  Google Scholar 

  5. Ron E, Lubin JH, Shore RE et al (1995) Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res 141:259–277

    Article  PubMed  CAS  Google Scholar 

  6. Ron E (2003) Cancer risks from medical radiation. Health Phys 85:47–59

    Article  PubMed  CAS  Google Scholar 

  7. Kleinerman RA (2006) Cancer risks following diagnostic and therapeutic radiation exposure in children. Pediatr Radiol 36(Suppl 14):121–125

    Article  PubMed  Google Scholar 

  8. Jemal A, Siegel R, Ward E et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  9. Inskip PD, Curtis RE (2007) New malignancies following childhood cancer in the United States, 1973–2002. Int J Cancer 121:2233–2240

    Article  PubMed  CAS  Google Scholar 

  10. Malkin D, Jolly KW, Barbier N et al (1992) Germline mutations of the p53 tumor-suppressor gene in children and young adults with second malignant neoplasms. N Engl J Med 326:1309–1315

    PubMed  CAS  Google Scholar 

  11. Bhatia S, Sklar C (2002) Second cancers in survivors of childhood cancer. Nature Rev Cancer 2:124–132

    Article  Google Scholar 

  12. Meadows AT (2005) A mouse model for studying therapy-induced cancers (editorial). Cancer Cell 8:271–273

    Article  PubMed  CAS  Google Scholar 

  13. Strahm B, Malkin D (2006) Hereditary cancer predisposition in children: genetic basis and clinical implications. Int J Cancer 119:2001–2006

    Article  PubMed  CAS  Google Scholar 

  14. Evans DG, Birch JM, Ramsden RT et al (2006) Malignant transformation and new primary tumours after therapeutic radiation for benign disease: substantial risks in certain tumour prone syndromes. J Med Genet 43:289–294

    Article  PubMed  CAS  Google Scholar 

  15. Moll AC, Imhof SM, Bouter LM et al (1996) Second primary tumors in hereditary retinoblastoma: a register-based follow-up study, 1945–1994. Int J Cancer 67:515–519

    Article  PubMed  CAS  Google Scholar 

  16. Draper GJ, Sanders BM, Kingston JE (1986) Second primary neoplasms in patients with retinoblastoma. Br J Cancer 53:661–671

    PubMed  CAS  Google Scholar 

  17. Wong FL, Boice JD Jr, Abramson DH et al (1997) Cancer incidence after retinoblastoma: radiation dose and sarcoma risk. JAMA 278:1262–1267

    Article  PubMed  CAS  Google Scholar 

  18. Kleinerman RA, Tucker MA, Tarone RE et al (2005) Risk of new cancers after radiotherapy in long-term survivors of retinoblastoma: an extended follow-up. J Clin Oncol 23:2272–2279

    Article  PubMed  Google Scholar 

  19. Kleinerman RA, Tucker MA, Abramson DH et al (2007) Risk of soft tissue sarcomas by individual subtype in survivors of hereditary retinoblastoma. J Natl Cancer Inst 99:24–31

    Article  PubMed  Google Scholar 

  20. Broaddus E, Topham A, Singh A (2008) Survival with retinoblastoma in the United States: 1975–2004. Br J Ophthalmol. doi:10.1136/bjo.2008.143842

  21. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823

    Article  PubMed  Google Scholar 

  22. Krengli M, Hug EB, Adams JA et al (2005) Proton radiation therapy for retinoblastoma: comparison of various intraocular tumor locations and beam arrangements. Int J Radiat Oncol Biol Phys 61:583–593

    PubMed  Google Scholar 

  23. Jarlskog CZ, Paganetti H (2008) Risk of developing second cancer from neutron dose in proton therapy as function of field characteristics, organ, and patient age. Int J Rad Oncol Biol Phys 72:228–235

    Google Scholar 

  24. Listernick R, Ferner RE, Liu GT et al (2007) Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann Neurol 61:189–198

    Article  PubMed  CAS  Google Scholar 

  25. Ferner RE, Huson SM, Thomas N et al (2007) Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet 44:81–88

    Article  PubMed  CAS  Google Scholar 

  26. Sharif S, Ferner R, Birch JM et al (2006) Second primary tumors in neurofibromatosis 1 patients treated for optic glioma: substantial risks after radiotherapy. J Clin Oncol 24:2570–2575

    Article  PubMed  Google Scholar 

  27. Evans DG, Baser ME, McGaughran J et al (2002) Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet 39:311–314

    Article  PubMed  CAS  Google Scholar 

  28. Ducatman B, Scheithauer B, Piepgras D et al (1986) Malignant peripheral nerve sheath tumors. A clinicopathological study of 120 patients. Cancer 57:2006–2021

    Article  PubMed  CAS  Google Scholar 

  29. Loree TR, North JH, Werness BA et al (2000) Malignant peripheral nerve sheath tumors of the head and neck: analysis of prognostic factors. Otolaryngol Head Neck Surg 122:667–672

    Article  PubMed  CAS  Google Scholar 

  30. Malkin D, Li FP, Strong LC et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas and other neoplasms. Science 250:1233–1238

    Article  PubMed  CAS  Google Scholar 

  31. Li FP, Fraumeni JF Jr (1969) Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann Intern Med 71:747–752

    PubMed  CAS  Google Scholar 

  32. Li FP, Fraumeni JF Jr, Mulvihill JJ et al (1988) A cancer family syndrome in 24 kindreds. Cancer Res 48:5358–5362

    PubMed  CAS  Google Scholar 

  33. Hisada M, Garber JE, Fung CY et al (1998) Multiple primary cancers in families with Li-Fraumeni syndrome. J Natl Cancer Inst 90:606–611

    Article  PubMed  CAS  Google Scholar 

  34. Masciari S, Van den Abbeele AN, Diller LR et al (2008) F18-fluorodeoxyglucose-positron emission tomography/computed tomography screening in Li-Fraumeni syndrome. JAMA 299:1315–1319

    Article  PubMed  CAS  Google Scholar 

  35. Gorlin RJ (1987) Nevoid basal-cell syndrome. Medicine 66:98–113

    Article  PubMed  CAS  Google Scholar 

  36. Strong L (1977) Genetic and environmental interactions. Cancer 40(Suppl 4):S1861–S1866

    Article  Google Scholar 

  37. Evans DG, Farndon PA, Burrell LD et al (1991) The incidence of Gorlin syndrome in 173 consecutive cases of medulloblastoma. Br J Cancer 64:959–961

    PubMed  CAS  Google Scholar 

  38. Stravrou T, Bromley CM, Nicholson HS et al (2001) Prognostic factors and secondary malignancies in childhood medulloblastoma. J Pediatr Hematol Oncol 23:431–436

    Article  Google Scholar 

  39. Goldstein AM, Yuen J, Tucker MA (1997) Second cancers after medulloblastoma: population-based results from the United States and Sweden. Cancer Causes Control 8:865–871

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Division of Cancer Epidemiology and Genetics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth A. Kleinerman.

Additional information

Ms. Kleinerman has no relevant financial relationships or potential conflicts of interest related to the material to be presented.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinerman, R.A. Radiation-sensitive genetically susceptible pediatric sub-populations. Pediatr Radiol 39 (Suppl 1), 27–31 (2009). https://doi.org/10.1007/s00247-008-1015-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-008-1015-6

Keywords

Navigation