Skip to main content
Log in

18F-PET–CT in extracranial paediatric oncology: when and for whom is it useful?

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Kaste SC (2004) Issues specific to implementing PET–CT for pediatric oncology: what we have learned along the way. Pediatr Radiol 34:205–213

    Article  PubMed  Google Scholar 

  2. Agress H Jr, Cooper BZ (2004) Detection of clinically unexpected malignant and premalignant tumors with whole-body FDG PET: histopathologic comparison. Radiology 230:417–422

    Article  PubMed  Google Scholar 

  3. Shulkin BL, Mitchell DS, Ungar DR et al (1995) Neoplasms in a pediatric population: 2-[F-18]-fluoro-2-deoxy-d-glucose PET studies. Radiology 194:495–500

    PubMed  CAS  Google Scholar 

  4. Kaste SC, Dome JS (2006) PET/PET–CT imaging of Wilms tumor. In: Charron M (ed) Practical pediatric PET imaging. Springer, New York

    Google Scholar 

  5. Brenner W, Bohuslavizki KH, Eary JF (2003) PET imaging of osteosarcoma. J Nucl Med 44:930–942

    PubMed  Google Scholar 

  6. Franzius C, Daldrup-Link HE, Wagner-Bohn A et al (2002) FDG-PET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging. Ann Oncol 13:157–160

    Article  PubMed  CAS  Google Scholar 

  7. Gyorke T, Zajic T, Lange A et al (2006) Impact of FDG PET for staging of Ewing sarcomas and primitive neuroectodermal tumours. Nucl Med Commun 27:17–24

    Article  PubMed  Google Scholar 

  8. Lucas JD, O'Doherty MJ, Wong JC et al (1998) Evaluation of fluorodeoxyglucose positron emission tomography in the management of soft-tissue sarcomas. J Bone Joint Surg Br 80:441–447

    Article  PubMed  CAS  Google Scholar 

  9. Shad A, Magrath I (1997) Malignant non-Hodgkin’s lymphomas in children. In: Pizzo PA, Poplack DG (eds) Principles and practice of pediatric oncology. Lippincott Raven, Philadelphia, pp 545–587

    Google Scholar 

  10. Rini JN, Leonidas JC, Tomas MB et al (2003) 18F-FDG PET versus CT for evaluating the spleen during initial staging of lymphoma. J Nucl Med 44:1072–1074

    PubMed  Google Scholar 

  11. Depas G, De Barsy C, Jerusalem G et al (2005) 18F-FDG PET in children with lymphomas. Eur J Nucl Med Mol Imaging 32:31–38

    Article  PubMed  Google Scholar 

  12. Montravers F, McNamara D, Landman-Parker J et al (2002) [(18)F]FDG in childhood lymphoma: clinical utility and impact on management. Eur J Nucl Med Mol Imaging 29:1155–1165

    Article  PubMed  CAS  Google Scholar 

  13. Bar-Sever Z, Keidar Z, Ben Barak A et al (2007) The incremental value of 18F-FDG PET/CT in paediatric malignancies. Eur J Nucl Med Mol Imaging 34:630–637

    Article  PubMed  Google Scholar 

  14. Krasin MJ, Hudson MM, Kaste SC (2004) Positron emission tomography in pediatric radiation oncology: integration in the treatment-planning process. Pediatr Radiol 34:214–221

    Article  PubMed  Google Scholar 

  15. Mutic S, Grigsby PW, Low DA et al (2002) PET-guided three-dimensional treatment planning of intracavitary gynecologic implants. Int J Radiat Oncol Biol Phys 52:1104–1110

    PubMed  Google Scholar 

  16. Mutic S, Malyapa RS, Grigsby PW et al (2003) PET-guided IMRT for cervical carcinoma with positive para-aortic lymph nodes-a dose-escalation treatment planning study. Int J Radiat Oncol Biol Phys 55:28–35

    Article  PubMed  Google Scholar 

  17. Caldwell CB, Mah K, Ung YC et al (2001) Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 51:923–931

    PubMed  CAS  Google Scholar 

  18. Mah K, Caldwell CB, Ung YC et al (2002) The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 52:339–350

    PubMed  Google Scholar 

  19. Erdi YE, Rosenzweig K, Erdi AK et al (2002) Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 62:51–60

    Article  PubMed  Google Scholar 

  20. Nanni C, Rubello D, Castellucci P et al (2006) 18F-FDG PET/CT fusion imaging in paediatric solid extracranial tumours. Biomed Pharmacother 60:593–606

    Article  PubMed  CAS  Google Scholar 

  21. Hawkins DS, Rajendran JG, Conrad EU III et al (2002) Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-d-glucose positron emission tomography. Cancer 94:3277–3284

    Article  PubMed  CAS  Google Scholar 

  22. McCarville MB, Christie R, Daw NC et al (2005) PET/CT in the evaluation of childhood sarcomas. AJR 184:1293–1304

    PubMed  Google Scholar 

  23. Franzius C, Daldrup-Link HE, Sciuk J et al (2001) FDG-PET for detection of pulmonary metastases from malignant primary bone tumors: comparison with spiral CT. Ann Oncol 12:479–486

    Article  PubMed  CAS  Google Scholar 

  24. Aoki J, Watanabe H, Shinozaki T et al (2001) FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology 219:774–777

    PubMed  CAS  Google Scholar 

  25. Franzius C, Bielack S, Flege S et al (2002) Prognostic significance of (18)F-FDG and (99m)Tc-methylene diphosphonate uptake in primary osteosarcoma. J Nucl Med 43:1012–1017

    PubMed  CAS  Google Scholar 

  26. Schulte M, Brecht-Krauss D, Werner M et al (1999) Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET. J Nucl Med 40:1637–1643

    PubMed  CAS  Google Scholar 

  27. Shulkin BL, Hutchinson RJ, Castle VP et al (1996) Neuroblastoma: positron emission tomography with 2-[fluorine-18]-fluoro-2-deoxy-d-glucose compared with metaiodobenzylguanidine scintigraphy. Radiology 199:743–750

    PubMed  CAS  Google Scholar 

  28. Kushner BH, Yeung HW, Larson SM et al (2001) Extending positron emission tomography scan utility to high-risk neuroblastoma: fluorine-18 fluorodeoxyglucose positron emission tomography as sole imaging modality in follow-up of patients. J Clin Oncol 19:3397–3405

    PubMed  CAS  Google Scholar 

  29. Miyake M, Tateishi U, Maeda T et al (2006) A case of ganglioneuroma presenting abnormal FDG uptake. Ann Nucl Med 20:357–360

    Article  PubMed  Google Scholar 

  30. Azouz EM, Saigal G, Rodriguez MM et al (2005) Langerhans’ cell histiocytosis: pathology, imaging and treatment of skeletal involvement. Pediatr Radiol 35:103–115

    Article  PubMed  Google Scholar 

  31. Binkovitz LA, Olshefski RS, Adler BH (2003) Coincidence FDG-PET in the evaluation of Langerhans’ cell histiocytosis: preliminary findings. Pediatr Radiol 33:598–602

    Article  PubMed  Google Scholar 

  32. Jubran RF, Marachelian A, Dorey F et al (2005) Predictors of outcome in children with Langerhans cell histiocytosis. Pediatr Blood Cancer 45:37–42

    Article  PubMed  Google Scholar 

  33. Kaste SC, Rodriguez-Galindo C, McCarville ME et al (2007) PET–CT in pediatric Langerhans cell histiocytosis. Pediatr Radiol 37:615–622

    Article  PubMed  Google Scholar 

  34. Bredella MA, Torriani M, Hornicek F et al (2007) Value of PET in the assessment of patients with neurofibromatosis type 1. AJR 189:928–935

    Article  PubMed  Google Scholar 

  35. Chander S, Westphal SM, Zak IT et al (2004) Retroperitoneal malignant peripheral nerve sheath tumor: evaluation with serial FDG-PET. Clin Nucl Med 29:415–418

    Article  PubMed  Google Scholar 

  36. Cardona S, Schwarzbach M, Hinz U et al (2003) Evaluation of F18-deoxyglucose positron emission tomography (FDG-PET) to assess the nature of neurogenic tumours. Eur J Surg Oncol 29:536–541

    Article  PubMed  CAS  Google Scholar 

  37. Son JM, Ahn MI, Cho KD et al (2007) Varying degrees of FDG uptake in multiple benign neurofibromas on PET/CT. Br J Radiol 80:e222–e226

    Article  PubMed  CAS  Google Scholar 

  38. Barrington SF, O'Doherty MJ (2003) Limitations of PET for imaging lymphoma. Eur J Nucl Med Mol Imaging 30 Suppl 1:S117–S127

    Google Scholar 

  39. Shreve PD, Bui CD (2002) Normal variants in FDG PET Imaging. In: Wahl RL, Buchanan JW (eds) Principles and practice of positron emission tomography. Lippincott, Williams and Wilkins, Philadelphia, pp 111–136

    Google Scholar 

  40. Lerman H, Metser U, Grisaru D et al (2004) Normal and abnormal 18F-FDG endometrial and ovarian uptake in pre- and postmenopausal patients: assessment by PET/CT. J Nucl Med 45:266–271

    PubMed  Google Scholar 

  41. Yeung HW, Grewal RK, Gonen M et al (2003) Patterns of (18)F-FDG uptake in adipose tissue and muscle: a potential source of false-positives for PET. J Nucl Med 44:1789–1796

    PubMed  Google Scholar 

  42. Hudson MM, Krasin MJ, Kaste SC (2004) PET imaging in pediatric Hodgkin's lymphoma. Pediatr Radiol 34:190–198

    Article  PubMed  Google Scholar 

  43. Hollingshead LM, Goa KL (1991) Recombinant granulocyte colony-stimulating factor (rG-CSF). A review of its pharmacological properties and prospective role in neutropenic conditions. Drugs 42:300–330

    Article  PubMed  CAS  Google Scholar 

  44. Hollinger EF, Alibazoglu H, Ali A et al (1998) Hematopoietic cytokine-mediated FDG uptake simulates the appearance of diffuse metastatic disease on whole-body PET imaging. Clin Nucl Med 23:93–98

    Article  PubMed  CAS  Google Scholar 

  45. Sugawara Y, Fisher SJ, Zasadny KR et al (1998) Preclinical and clinical studies of bone marrow uptake of fluorine-1-fluorodeoxyglucose with or without granulocyte colony-stimulating factor during chemotherapy. J Clin Oncol 16:173–180

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue C. Kaste.

Additional information

Dr Kaste has declared that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaste, S.C. 18F-PET–CT in extracranial paediatric oncology: when and for whom is it useful?. Pediatr Radiol 38 (Suppl 3), 459–466 (2008). https://doi.org/10.1007/s00247-008-0839-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-008-0839-4

Navigation