Skip to main content

Advertisement

Log in

Diffusion-weighted and diffusion tensor imaging for pediatric musculoskeletal disorders

  • Minisymposium
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Diffusion-weighted imaging (DWI) is a powerful tool that has recently been applied to evaluate several pediatric musculoskeletal disorders. DWI probes abnormalities of tissue structure by detecting microscopic changes in water mobility that develop when disease alters the organization of normal tissue. DWI provides tissue characterization at a cellular level beyond what is available with other imaging techniques, and can sometimes identify pathology before gross anatomic alterations manifest. These features of early detection and tissue characterization make DWI particularly appealing for probing diseases that affect the musculoskeletal system. This article focuses on the current and future applications of DWI in the musculoskeletal system, with particular attention paid to pediatric disorders. Although most of the applications are experimental, we have emphasized the current state of knowledge and the main research questions that need to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    PubMed  Google Scholar 

  2. Burdette JH, Elster AD, Ricci PE (1999) Acute cerebral infarction: quantification of spin-density and T2 shine-through phenomena on diffusion-weighted MR images. Radiology 212:333–339

    PubMed  CAS  Google Scholar 

  3. Chun T, Ulug AM, van Zijl PC (1998) Single-shot diffusion-weighted trace imaging on a clinical scanner. Magn Reson Med 40:622–628

    Article  PubMed  CAS  Google Scholar 

  4. Raya JG, Dietrich O, Reiser MF et al (2005) Techniques for diffusion-weighted imaging of bone marrow. Eur J Radiol 55:64–73

    Article  PubMed  CAS  Google Scholar 

  5. Baur A, Stabler A, Bruning R et al (1998) Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology 207:349–356

    PubMed  CAS  Google Scholar 

  6. Gudbjartsson H, Maier SE, Mulkern RV et al (1996) Line scan diffusion imaging. Magn Reson Med 36:509–519

    Article  PubMed  CAS  Google Scholar 

  7. Le Bihan D, Mangin JF, Poupon C et al (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546

    Article  PubMed  Google Scholar 

  8. Vogler JB 3rd, Murphy WA (1988) Bone marrow imaging. Radiology 168:679–693

    PubMed  Google Scholar 

  9. Jaramillo D, Menezes NM, Olear EA et al (2004) Line scan diffusion shows epiphyseal and metaphyseal abnormalities in Legg-Calve-Perthes disease. Pediatr Radiol 34:S48

    Google Scholar 

  10. Nonomura Y, Yasumoto M, Yoshimura R et al (2001) Relationship between bone marrow cellularity and apparent diffusion coefficient. J Magn Reson Imaging 13:757–760

    Article  PubMed  CAS  Google Scholar 

  11. Mulkern RV, Schwartz RB (2003) In re: characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. AJNR 24:1489–1490; author reply 1490–1491

    PubMed  Google Scholar 

  12. Lehnert A, Machann J, Helms G et al (2004) Diffusion characteristics of large molecules assessed by proton MRS on a whole-body MR system. Magn Reson Imaging 22:39–46

    Article  PubMed  CAS  Google Scholar 

  13. Jaramillo D, Connolly SA, Vajapeyam S et al (2003) Normal and ischemic epiphysis of the femur: diffusion MR imaging study in piglets. Radiology 227:825–832

    Article  PubMed  Google Scholar 

  14. Menezes NM, Connolly SA, Shapiro F et al (2007) Early ischemia in growing piglet skeleton: MR diffusion and perfusion imaging. Radiology 242:129–136

    PubMed  Google Scholar 

  15. Castillo M, Arbelaez A, Smith JK et al (2000) Diffusion-weighted MR imaging offers no advantage over routine noncontrast MR imaging in the detection of vertebral metastases. AJNR 21:948–953

    PubMed  CAS  Google Scholar 

  16. Herneth AM, Friedrich K, Weidekamm C et al (2005) Diffusion-weighted imaging of bone marrow pathologies. Eur J Radiol 55:74–83

    Article  PubMed  Google Scholar 

  17. Hayashida Y, Hirai T, Yakushiji T et al (2006) Evaluation of diffusion-weighted imaging for the differential diagnosis of poorly contrast-enhanced and T2-prolonged bone masses: initial experience. J Magn Reson Imaging 23:377–382

    Article  PubMed  Google Scholar 

  18. Byun WM, Shin SO, Chang Y et al (2002) Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. AJNR 23:906–912

    PubMed  Google Scholar 

  19. Hayashida Y, Yakushiji T, Awai K et al (2006) Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image: initial results. Eur Radiol 16:2637–2643

    Article  PubMed  Google Scholar 

  20. Lang P, Wendland MF, Saeed M et al (1998) Osteogenic sarcoma: noninvasive in vivo assessment of tumor necrosis with diffusion-weighted MR imaging. Radiology 206:227–235

    PubMed  CAS  Google Scholar 

  21. Uhl M, Saueressig U, Koehler G et al (2006) Evaluation of tumour necrosis during chemotherapy with diffusion-weighted MR imaging: preliminary results in osteosarcomas. Pediatr Radiol 36:1306–1311

    Article  PubMed  Google Scholar 

  22. Uhl M, Saueressig U, van Buiren M et al (2006) Osteosarcoma: preliminary results of in vivo assessment of tumor necrosis after chemotherapy with diffusion- and perfusion-weighted magnetic resonance imaging. Invest Radiol 41:618–623

    Article  PubMed  CAS  Google Scholar 

  23. Yasumoto M, Nonomura Y, Yoshimura R et al (2002) MR detection of iliac bone marrow involvement by malignant lymphoma with various MR sequences including diffusion-weighted echo-planar imaging. Skeletal Radiol 31:263–269

    Article  PubMed  CAS  Google Scholar 

  24. Stabler A, Baur A, Kruger A et al (1998) Differential diagnosis of erosive osteochondrosis and bacterial spondylitis: magnetic resonance tomography (MRT). Rofo 168:421–428

    PubMed  CAS  Google Scholar 

  25. Chan JH, Peh WC, Tsui EY et al (2002) Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients. Br J Radiol 75:207–214

    PubMed  CAS  Google Scholar 

  26. Pui MH, Mitha A, Rae WI et al (2005) Diffusion-weighted magnetic resonance imaging of spinal infection and malignancy. J Neuroimaging 15:164–170

    Article  PubMed  Google Scholar 

  27. Filidoro L, Dietrich O, Weber J et al (2005) High-resolution diffusion tensor imaging of human patellar cartilage: feasibility and preliminary findings. Magn Reson Med 53:993–998

    Article  PubMed  CAS  Google Scholar 

  28. Deng X, Farley M, Nieminen MT et al (2007) Diffusion tensor imaging of native and degenerated human articular cartilage. Magn Reson Imaging 25:168–171

    Article  PubMed  Google Scholar 

  29. Turner R, Le Bihan D, Chesnick AS (1991) Echo-planar imaging of diffusion and perfusion. Magn Reson Med 19:247–253

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Jaramillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacKenzie, J.D., Gonzalez, L., Hernandez, A. et al. Diffusion-weighted and diffusion tensor imaging for pediatric musculoskeletal disorders. Pediatr Radiol 37, 781–788 (2007). https://doi.org/10.1007/s00247-007-0517-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-007-0517-y

Keywords

Navigation