Advertisement

Pediatric Radiology

, Volume 37, Issue 8, pp 781–788 | Cite as

Diffusion-weighted and diffusion tensor imaging for pediatric musculoskeletal disorders

  • John D. MacKenzie
  • Leonardo Gonzalez
  • Andrea Hernandez
  • Kai Ruppert
  • Diego JaramilloEmail author
Minisymposium

Abstract

Diffusion-weighted imaging (DWI) is a powerful tool that has recently been applied to evaluate several pediatric musculoskeletal disorders. DWI probes abnormalities of tissue structure by detecting microscopic changes in water mobility that develop when disease alters the organization of normal tissue. DWI provides tissue characterization at a cellular level beyond what is available with other imaging techniques, and can sometimes identify pathology before gross anatomic alterations manifest. These features of early detection and tissue characterization make DWI particularly appealing for probing diseases that affect the musculoskeletal system. This article focuses on the current and future applications of DWI in the musculoskeletal system, with particular attention paid to pediatric disorders. Although most of the applications are experimental, we have emphasized the current state of knowledge and the main research questions that need to be investigated.

Keywords

Diffusion-weighted imaging Diffusion tensor imaging Musculoskeletal disorders Children 

References

  1. 1.
    Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407PubMedGoogle Scholar
  2. 2.
    Burdette JH, Elster AD, Ricci PE (1999) Acute cerebral infarction: quantification of spin-density and T2 shine-through phenomena on diffusion-weighted MR images. Radiology 212:333–339PubMedGoogle Scholar
  3. 3.
    Chun T, Ulug AM, van Zijl PC (1998) Single-shot diffusion-weighted trace imaging on a clinical scanner. Magn Reson Med 40:622–628PubMedCrossRefGoogle Scholar
  4. 4.
    Raya JG, Dietrich O, Reiser MF et al (2005) Techniques for diffusion-weighted imaging of bone marrow. Eur J Radiol 55:64–73PubMedCrossRefGoogle Scholar
  5. 5.
    Baur A, Stabler A, Bruning R et al (1998) Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology 207:349–356PubMedGoogle Scholar
  6. 6.
    Gudbjartsson H, Maier SE, Mulkern RV et al (1996) Line scan diffusion imaging. Magn Reson Med 36:509–519PubMedCrossRefGoogle Scholar
  7. 7.
    Le Bihan D, Mangin JF, Poupon C et al (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546PubMedCrossRefGoogle Scholar
  8. 8.
    Vogler JB 3rd, Murphy WA (1988) Bone marrow imaging. Radiology 168:679–693PubMedGoogle Scholar
  9. 9.
    Jaramillo D, Menezes NM, Olear EA et al (2004) Line scan diffusion shows epiphyseal and metaphyseal abnormalities in Legg-Calve-Perthes disease. Pediatr Radiol 34:S48Google Scholar
  10. 10.
    Nonomura Y, Yasumoto M, Yoshimura R et al (2001) Relationship between bone marrow cellularity and apparent diffusion coefficient. J Magn Reson Imaging 13:757–760PubMedCrossRefGoogle Scholar
  11. 11.
    Mulkern RV, Schwartz RB (2003) In re: characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. AJNR 24:1489–1490; author reply 1490–1491PubMedGoogle Scholar
  12. 12.
    Lehnert A, Machann J, Helms G et al (2004) Diffusion characteristics of large molecules assessed by proton MRS on a whole-body MR system. Magn Reson Imaging 22:39–46PubMedCrossRefGoogle Scholar
  13. 13.
    Jaramillo D, Connolly SA, Vajapeyam S et al (2003) Normal and ischemic epiphysis of the femur: diffusion MR imaging study in piglets. Radiology 227:825–832PubMedCrossRefGoogle Scholar
  14. 14.
    Menezes NM, Connolly SA, Shapiro F et al (2007) Early ischemia in growing piglet skeleton: MR diffusion and perfusion imaging. Radiology 242:129–136PubMedGoogle Scholar
  15. 15.
    Castillo M, Arbelaez A, Smith JK et al (2000) Diffusion-weighted MR imaging offers no advantage over routine noncontrast MR imaging in the detection of vertebral metastases. AJNR 21:948–953PubMedGoogle Scholar
  16. 16.
    Herneth AM, Friedrich K, Weidekamm C et al (2005) Diffusion-weighted imaging of bone marrow pathologies. Eur J Radiol 55:74–83PubMedCrossRefGoogle Scholar
  17. 17.
    Hayashida Y, Hirai T, Yakushiji T et al (2006) Evaluation of diffusion-weighted imaging for the differential diagnosis of poorly contrast-enhanced and T2-prolonged bone masses: initial experience. J Magn Reson Imaging 23:377–382PubMedCrossRefGoogle Scholar
  18. 18.
    Byun WM, Shin SO, Chang Y et al (2002) Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. AJNR 23:906–912PubMedGoogle Scholar
  19. 19.
    Hayashida Y, Yakushiji T, Awai K et al (2006) Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image: initial results. Eur Radiol 16:2637–2643PubMedCrossRefGoogle Scholar
  20. 20.
    Lang P, Wendland MF, Saeed M et al (1998) Osteogenic sarcoma: noninvasive in vivo assessment of tumor necrosis with diffusion-weighted MR imaging. Radiology 206:227–235PubMedGoogle Scholar
  21. 21.
    Uhl M, Saueressig U, Koehler G et al (2006) Evaluation of tumour necrosis during chemotherapy with diffusion-weighted MR imaging: preliminary results in osteosarcomas. Pediatr Radiol 36:1306–1311PubMedCrossRefGoogle Scholar
  22. 22.
    Uhl M, Saueressig U, van Buiren M et al (2006) Osteosarcoma: preliminary results of in vivo assessment of tumor necrosis after chemotherapy with diffusion- and perfusion-weighted magnetic resonance imaging. Invest Radiol 41:618–623PubMedCrossRefGoogle Scholar
  23. 23.
    Yasumoto M, Nonomura Y, Yoshimura R et al (2002) MR detection of iliac bone marrow involvement by malignant lymphoma with various MR sequences including diffusion-weighted echo-planar imaging. Skeletal Radiol 31:263–269PubMedCrossRefGoogle Scholar
  24. 24.
    Stabler A, Baur A, Kruger A et al (1998) Differential diagnosis of erosive osteochondrosis and bacterial spondylitis: magnetic resonance tomography (MRT). Rofo 168:421–428PubMedGoogle Scholar
  25. 25.
    Chan JH, Peh WC, Tsui EY et al (2002) Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients. Br J Radiol 75:207–214PubMedGoogle Scholar
  26. 26.
    Pui MH, Mitha A, Rae WI et al (2005) Diffusion-weighted magnetic resonance imaging of spinal infection and malignancy. J Neuroimaging 15:164–170PubMedCrossRefGoogle Scholar
  27. 27.
    Filidoro L, Dietrich O, Weber J et al (2005) High-resolution diffusion tensor imaging of human patellar cartilage: feasibility and preliminary findings. Magn Reson Med 53:993–998PubMedCrossRefGoogle Scholar
  28. 28.
    Deng X, Farley M, Nieminen MT et al (2007) Diffusion tensor imaging of native and degenerated human articular cartilage. Magn Reson Imaging 25:168–171PubMedCrossRefGoogle Scholar
  29. 29.
    Turner R, Le Bihan D, Chesnick AS (1991) Echo-planar imaging of diffusion and perfusion. Magn Reson Med 19:247–253PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • John D. MacKenzie
    • 1
  • Leonardo Gonzalez
    • 1
  • Andrea Hernandez
    • 1
  • Kai Ruppert
    • 1
  • Diego Jaramillo
    • 1
    Email author
  1. 1.Department of RadiologyThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations