Advertisement

Pediatric Radiology

, Volume 37, Issue 8, pp 739–748 | Cite as

Principles and implementation of diffusion-weighted and diffusion tensor imaging

  • Timothy P. L. RobertsEmail author
  • Erin Simon Schwartz
Minisymposium

Abstract

We review the physiological basis of diffusion-weighted imaging and discuss the implementation of diffusion-weighted imaging pulse sequences and the subsequent postprocessing to yield quantitative estimations of diffusion parameters. We also introduce the concept of directionality of “apparent” diffusion in vivo and the means of assessing such anisotropy quantitatively. This in turn leads to the methodological application of diffusion tensor imaging and the subsequent postprocessing, known as tractography. The following articles deal with the clinical applications enabled by such methodologies.

Keywords

Diffusion-weighted imaging Diffusion tensor imaging Children 

References

  1. 1.
    Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407PubMedGoogle Scholar
  2. 2.
    Moseley ME, Cohen Y, Mintorovitch J et al (1990) Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med 14:330–346PubMedCrossRefGoogle Scholar
  3. 3.
    Einstein A (1905) Uber die von der molekularkinetischen Theorie der Wärme gefordete Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, or on the motion-required by the molecular kinetic theory of heat-of small particles suspended in stationary liquid. Ann Phys 17:549CrossRefGoogle Scholar
  4. 4.
    Latour LL, Svoboda K, Mitra PP et al (1994) Time-dependent diffusion of water in a biological model system. Proc Natl Acad Sci U S A 91:1229–1233PubMedCrossRefGoogle Scholar
  5. 5.
    Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Phys Chem 42:288–292CrossRefGoogle Scholar
  6. 6.
    Stehling MK, Turner R, Mansfield P (1991) Echo-planar imaging: magnetic resonance imaging in a fraction of a second. Science 254:43–50PubMedCrossRefGoogle Scholar
  7. 7.
    Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42:963–969PubMedCrossRefGoogle Scholar
  8. 8.
    Le Bihan D (1990) Magnetic resonance imaging of perfusion. Magn Reson Med 14:283–292PubMedCrossRefGoogle Scholar
  9. 9.
    Rowley HA, Grant PE, Roberts TP (1999) Diffusion MR imaging. Theory and applications. Neuroimaging Clin N Am 9:343–361PubMedGoogle Scholar
  10. 10.
    Sakuma H, Nomura Y, Takeda K et al (1991) Adult and neonatal human brain: diffusional anisotropy and myelination with diffusion-weighted MR imaging. Radiology 180:229–233PubMedGoogle Scholar
  11. 11.
    Nomura Y, Sakuma H, Takeda K et al (1994) Diffusional anisotropy of the human brain assessed with diffusion-weighted MR: relation with normal brain development and aging. AJNR 15:231–238PubMedGoogle Scholar
  12. 12.
    Takahashi M, Ono J, Harada K et al (2000) Diffusional anisotropy in cranial nerves with maturation: quantitative evaluation with diffusion MR imaging in rats. Radiology 216:881–885PubMedGoogle Scholar
  13. 13.
    Wimberger DM, Roberts TP, Barkovich AJ et al (1995) Identification of “premyelination” by diffusion-weighted MRI. J Comput Assist Tomogr 19:28–33PubMedCrossRefGoogle Scholar
  14. 14.
    Chepuri NB, Yen YF, Burdette JH et al (2002) Diffusion anisotropy in the corpus callosum. AJNR 23:803–808PubMedGoogle Scholar
  15. 15.
    Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103:247–254PubMedCrossRefGoogle Scholar
  16. 16.
    Hasan KM, Alexander AL, Narayana PA (2004) Does fractional anisotropy have better noise immunity characteristics than relative anisotropy in diffusion tensor MRI? An analytical approach. Magn Reson Med 51:413–417PubMedCrossRefGoogle Scholar
  17. 17.
    Huppi PS, Maier SE, Peled S et al (1998) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 44:584–590PubMedCrossRefGoogle Scholar
  18. 18.
    Mori S, Crain BJ, Chacko VP et al (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269PubMedCrossRefGoogle Scholar
  19. 19.
    Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies – a technical review. NMR Biomed 15:468–480PubMedCrossRefGoogle Scholar
  20. 20.
    Jiang H, van Zijl PC, Kim J et al (2006) DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed 81:106–116PubMedCrossRefGoogle Scholar
  21. 21.
    Behrens TE, Johansen-Berg H, Woolrich MW et al (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6:750–757PubMedCrossRefGoogle Scholar
  22. 22.
    Behrens TE, Berg HJ, Jbabdi S (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34:144–155PubMedCrossRefGoogle Scholar
  23. 23.
    Ozarslan E, Mareci TH (2003) Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn Reson Med 50:955–965PubMedCrossRefGoogle Scholar
  24. 24.
    Hess CP, Mukherjee P, Han ET (2006) Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis. Magn Reson Med 56:104–117PubMedCrossRefGoogle Scholar
  25. 25.
    Wedeen VJ, Hagmann P, Tseng WY (2005) Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54:1377–1386PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Radiology, The Children’s Hospital of PhiladelphiaUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations