Skip to main content

Advertisement

Log in

Fractures in children with Pompe disease: a potentiallong-term complication

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Pompe disease (glycogen storage disease type II or acid maltase deficiency) is an autosomal recessive disorder caused by deficiency of the lysosomal enzyme acid α-glucosidase (GAA). Classic infantile-onset disease, characterized by cardiomegaly and profound weakness, leads to death in the first year of life from cardiorespiratory failure. Reversal of cardiomyopathy and improved motor function have been shown in clinical trials of rhGAA enzyme replacement therapy (ERT) with alglucosidase alfa (Myozyme), recently approved for clinical use. Increased survival potentially unmasks long-term complications of this previously lethal disease, including risk of skeletal fracture, recently identified at our institution and not previously reported in children with Pompe disease.

Objective

To report the risk of fracture in children with Pompe disease with increased survival with ERT.

Materials and methods

We present four cases of fracture in patients with classic infantile Pompe disease treated with ERT at our institution, and review a study database for additional reports of fracture in this population.

Results

We review 19 fractures in 14 children with Pompe disease on ERT.

Conclusion

Radiologists should be familiar with and vigilant for the association of fractures and increased survival on ERT in children with Pompe disease. We discuss potential mechanisms, implications for radiographic surveillance, potential intervention, and needs for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hirschhorn R, Reuser AJ (2001) Glycogen storage disease type II: acid alpha-glucosidase (acid maltase) deficiency. In: Scriver AB, Sly W et al (eds) The metabolic and molecular bases of metabolic disease. McGraw Hill, New York, pp 3389–3420

    Google Scholar 

  2. Kishnani PS, Howell RR (2004) Pompe disease in infants and children. J Pediatr 144:S35–S43

    Article  PubMed  CAS  Google Scholar 

  3. van den Hout HM, Hop W, van Diggelen OP et al (2003) The natural course of infantile Pompe’s disease: 20 original cases compared with 133 cases from the literature. Pediatrics 112:332–340

    Article  PubMed  Google Scholar 

  4. Kishnani PS, Hwu WL, Mandel H et al (2006) A retrospective, multinational, multicenter study on the natural history of infantile-onset Pompe disease. J Pediatr 148:671–676

    Article  PubMed  Google Scholar 

  5. Kishnani PS, Steiner RD, Bali D et al (2006) Pompe disease diagnosis and management guideline. Genet Med 8:267–288

    PubMed  Google Scholar 

  6. Amalfitano A, Bengur AR, Morse RP et al (2001) Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial. Genet Med 3:132–138

    Article  PubMed  CAS  Google Scholar 

  7. Klinge L, Straub V, Neudorf U et al (2005) Safety and efficacy of recombinant acid alpha-glucosidase (rhGAA) in patients with classical infantile Pompe disease: results of a phase II clinical trial. Neuromuscul Disord 15:24–31

    Article  PubMed  CAS  Google Scholar 

  8. van den Hout H, Reuser AJ, Vulto AG et al (2000) Recombinant human alpha-glucosidase from rabbit milk in Pompe patients. Lancet 356:397–398

    Article  PubMed  Google Scholar 

  9. Van den Hout JM, Kamphoven JH, Winkel LP et al (2004) Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk. Pediatrics 113:e448–e457

    Article  PubMed  Google Scholar 

  10. Van den Hout JM, Reuser AJ, de Klerk JB et al (2001) Enzyme therapy for Pompe disease with recombinant human alpha-glucosidase from rabbit milk. J Inherit Metab Dis 24:266–274

    Article  PubMed  Google Scholar 

  11. Kishnani PS, Nicolino M, Voit T et al (2006) Chinese hamster ovary cell-derived recombinant human acid alpha-glucosidase in infantile-onset Pompe disease. J Pediatr 149:89–97

    Article  PubMed  CAS  Google Scholar 

  12. Kishnani PS, Corzo D, Nicolino M et al (2007) Recombinant human acid alpha-glucosidase. Major clinical benefits in infantile-onset Pompe disease. Neurology 68:99–109

    Article  PubMed  CAS  Google Scholar 

  13. Lewiecki EM, Watts NB, McClung MR et al (2004) Official positions of the international society for clinical densitometry. J Clin Endocrinol Metab 89:3651–3655

    Article  PubMed  CAS  Google Scholar 

  14. Bianchi ML, Mazzanti A, Galbiati E et al (2003) Bone mineral density and bone metabolism in Duchenne muscular dystrophy. Osteoporos Int 14:761–767

    Article  PubMed  CAS  Google Scholar 

  15. Biggar WD, Bachrach LK, Henderson RC et al (2005) Bone health in Duchenne muscular dystrophy: a workshop report from the meeting in Cincinnati, Ohio, July 8, 2004. Neuromuscul Disord 15:80–85

    Article  PubMed  CAS  Google Scholar 

  16. Bothwell JE, Gordon KE, Dooley JM et al (2003) Vertebral fractures in boys with Duchenne muscular dystrophy. Clin Pediatr (Phila) 42:353–356

    Article  CAS  Google Scholar 

  17. Burke SW, Jameson VP, Roberts JM et al (1986) Birth fractures in spinal muscular atrophy. J Pediatr Orthop 6:34–36

    PubMed  CAS  Google Scholar 

  18. Granata C, Giannini S, Villa D et al (1991) Fractures in myopathies. Chir Organi Mov 76:39–45

    PubMed  CAS  Google Scholar 

  19. Gray B, Hsu JD, Furumasu J (1992) Fractures caused by falling from a wheelchair in patients with neuromuscular disease. Dev Med Child Neurol 34:589–592

    Article  PubMed  CAS  Google Scholar 

  20. Hsu JD (1979) Extremity fractures in children with neuromuscular disease. Johns Hopkins Med J 145:89–93

    PubMed  CAS  Google Scholar 

  21. Larson CM, Henderson RC (2000) Bone mineral density and fractures in boys with Duchenne muscular dystrophy. J Pediatr Orthop 20:71–74

    Article  PubMed  CAS  Google Scholar 

  22. McDonald DG, Kinali M, Gallagher AC et al (2002) Fracture prevalence in Duchenne muscular dystrophy. Dev Med Child Neurol 44:695–698

    Article  PubMed  Google Scholar 

  23. Vestergaard P, Glerup H, Steffensen BF et al (2001) Fracture risk in patients with muscular dystrophy and spinal muscular atrophy. J Rehabil Med 33:150–155

    Article  PubMed  CAS  Google Scholar 

  24. Talim B, Malaguti C, Gnudi S et al (2002) Vertebral compression in Duchenne muscular dystrophy following deflazacort. Neuromuscul Disord 12:294–295

    Article  PubMed  CAS  Google Scholar 

  25. Germain DP, Benistan K, Boutouyrie P et al (2005) Osteopenia and osteoporosis: previously unrecognized manifestations of Fabry disease. Clin Genet 68:93–95

    Article  PubMed  Google Scholar 

  26. Pastores GM, Meere PA (2005) Musculoskeletal complications associated with lysosomal storage disorders: Gaucher disease and Hurler-Scheie syndrome (mucopolysaccharidosis type I). Curr Opin Rheumatol 17:70–78

    Article  PubMed  Google Scholar 

  27. Apkon SD (2002) Osteoporosis in children who have disabilities. Phys Med Rehabil Clin N Am 13:839–855

    PubMed  Google Scholar 

  28. Brunner R, Doderlein L (1996) Pathological fractures in patients with cerebral palsy. J Pediatr Orthop B 5:232–238

    PubMed  CAS  Google Scholar 

  29. Henderson RC, Lark RK, Gurka MJ et al (2002) Bone density and metabolism in children and adolescents with moderate to severe cerebral palsy. Pediatrics 110(1 Part 1):e5

    Article  PubMed  Google Scholar 

  30. Jiang SD, Dai LY, Jiang LS (2006) Osteoporosis after spinal cord injury. Osteoporos Int 17:180–192

    Article  PubMed  Google Scholar 

  31. Quinlivan R, Roper H, Davie M et al (2005) Report of a Muscular Dystrophy Campaign funded workshop Birmingham, UK, January 16th 2004. Osteoporosis in Duchenne muscular dystrophy; its prevalence, treatment and prevention. Neuromuscul Disord 15:72–79

    Article  PubMed  CAS  Google Scholar 

  32. Kinali M, Banks LM, Mercuri E et al (2004) Bone mineral density in a paediatric spinal muscular atrophy population. Neuropediatrics 35:325–328

    Article  PubMed  CAS  Google Scholar 

  33. Douvillez B, Braillon P, Hodgkinson I et al (2005) Pain, osteopenia and body composition of 22 patients with Duchenne muscular dystrophy: a descriptive study. Ann Readapt Med Phys 48:616–622

    PubMed  CAS  Google Scholar 

  34. Krishnamurthy V, Hanna R, Mackey JM et al (2005) Osteopenia in Pompe disease: a case series presentation. Paper presented at the meeting of the Society of Inherited Metabolic Disorders, Monterey, CA

    Google Scholar 

  35. Oktenli C (2000) Renal magnesium wasting, hypomagnesemic hypocalcemia, hypocalciuria and osteopenia in a patient with glycogenosis type II. Am J Nephrol 20:412–417

    Article  PubMed  CAS  Google Scholar 

  36. Huang MH, Barrett-Connor E, Greendale GA et al (2006) Hyperkyphotic posture and risk of future osteoporotic fractures: the Rancho Bernardo study. J Bone Miner Res 21:419–423

    Article  PubMed  Google Scholar 

  37. Orchowski J, Polly DW Jr, Klemme WR et al (2000) The effect of kyphosis on the mechanical strength of a long-segment posterior construct using a synthetic model. Spine 25:1644–1648

    Article  PubMed  CAS  Google Scholar 

  38. Chad KE, Bailey DA, McKay HA et al (1999) The effect of a weight-bearing physical activity program on bone mineral content and estimated volumetric density in children with spastic cerebral palsy. J Pediatr 135:115–117

    Article  PubMed  CAS  Google Scholar 

  39. Goemaere S, Van Laere M, De Neve P et al (1994) Bone mineral status in paraplegic patients who do or do not perform standing. Osteoporos Int 4:138–143

    Article  PubMed  CAS  Google Scholar 

  40. Gudjonsdottir B, Mercer VS (2002) Effects of a dynamic versus a static prone stander on bone mineral density and behavior in four children with severe cerebral palsy. Pediatr Phys Ther 14:38–46

    PubMed  Google Scholar 

  41. Ward K, Alsop C, Caulton J et al (2004) Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res 19:360–369

    Article  PubMed  Google Scholar 

  42. Bianchi ML (2005) How to manage osteoporosis in children. Best Pract Res Clin Rheumatol 19:991–1005

    Article  PubMed  Google Scholar 

  43. Hawker GA, Ridout R, Harris VA et al (2005) Alendronate in the treatment of low bone mass in steroid-treated boys with Duchennes muscular dystrophy. Arch Phys Med Rehabil 86:284–288

    Article  PubMed  Google Scholar 

  44. Wagner KR, Lechtzin N, Judge DP (2007) Current treatment of adult Duchenne muscular dystrophy. Biochim Biophys Acta 1772:229–237

    PubMed  CAS  Google Scholar 

Download references

Financial disclosures

The clinical trials with rhGAA were supported by grants from Genzyme Corporation at the various sites that patients were treated. P.S.K. has received research/grant support and honoraria from Genzyme Corporation. P.S.K. is a member of the Pompe Disease Advisory Board for Genzyme Corporation. L.E.C. has received honoraria from Genzyme Corporation and research support from the Leal Foundation. S.D. and J.M. have received honoraria from Genzyme Corporation. Y.T.C. has served as a consultant for Genzyme Corporation. rhGAA, in the form of Genzyme’s product, Myozyme, has now been approved by the US FDA and the European Union as therapy for Pompe disease. Duke University and inventors of the method of treatment and predecessors of the cell lines used to generate the enzyme (rhGAA) used in the clinical trials could benefit financially pursuant to the University’s Policy on Inventions Patents and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priya S. Kishnani.

Additional information

Laura E. Case and Rabi Hanna contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Case, L.E., Hanna, R., Frush, D.P. et al. Fractures in children with Pompe disease: a potentiallong-term complication. Pediatr Radiol 37, 437–445 (2007). https://doi.org/10.1007/s00247-007-0428-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-007-0428-y

Keywords

Navigation